923 resultados para random forest regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel random copolymers containing dithienylcyclopentadienone, thiophene and benzothiadiazole were synthesized and photovoltaic properties of these materials were evaluated. Thermal, structural, optical and electrochemical characterization of the synthesized copolymers was carried out. These thermally stable copolymers are solution processable unlike the homopolymer. The absorption spectra indicated that with the incorporation of alkyl chains in the thiophene moiety, the onset of absorption increases and hence band gap decreases (1.47 eV to 1.41 eV). Bulk heterojunction solar cells were fabricated with the blend of copolymer and phenyl-C61-butyric acid methyl ester (PCBM) as the active material and device parameters were extracted. The copolymer consists of alkyl thiophene exhibit higher open circuit voltage than the copolymer consisting of thiophene moiety. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes in a region of Euclidean space. Following deployment, the nodes self-organize into a mesh topology with a key aspect being self-localization. Having obtained a mesh topology in a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this work, we analyze this approximation through two complementary analyses. We assume that the mesh topology is a random geometric graph on the nodes; and that some nodes are designated as anchors with known locations. First, we obtain high probability bounds on the Euclidean distances of all nodes that are h hops away from a fixed anchor node. In the second analysis, we provide a heuristic argument that leads to a direct approximation for the density function of the Euclidean distance between two nodes that are separated by a hop distance h. This approximation is shown, through simulation, to very closely match the true density function. Localization algorithms that draw upon the preceding analyses are then proposed and shown to perform better than some of the well-known algorithms present in the literature. Belief-propagation-based message-passing is then used to further enhance the performance of the proposed localization algorithms. To our knowledge, this is the first usage of message-passing for hop-count-based self-localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a distribution-free approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function n f(center dot), where n is an element of N, and f is a probability density function on R-d. A vertex located at x connects via directed edges to other vertices that are within a cut-off distance r(n)(x). We prove strong law results for (i) the critical cut-off function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large n and (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (''arithmetic random waves''). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we derive Hybrid, Bayesian and Marginalized Cramer-Rao lower bounds (HCRB, BCRB and MCRB) for the single and multiple measurement vector Sparse Bayesian Learning (SBL) problem of estimating compressible vectors and their prior distribution parameters. We assume the unknown vector to be drawn from a compressible Student-prior distribution. We derive CRBs that encompass the deterministic or random nature of the unknown parameters of the prior distribution and the regression noise variance. We extend the MCRB to the case where the compressible vector is distributed according to a general compressible prior distribution, of which the generalized Pareto distribution is a special case. We use the derived bounds to uncover the relationship between the compressibility and Mean Square Error (MSE) in the estimates. Further, we illustrate the tightness and utility of the bounds through simulations, by comparing them with the MSE performance of two popular SBL-based estimators. We find that the MCRB is generally the tightest among the bounds derived and that the MSE performance of the Expectation-Maximization (EM) algorithm coincides with the MCRB for the compressible vector. We also illustrate the dependence of the MSE performance of SBL based estimators on the compressibility of the vector for several values of the number of observations and at different signal powers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Native species' response to the presence of invasive species is context specific. This response cannot be studied in isolation from the prevailing environmental stresses in invaded habitats such as seasonal drought. We investigated the combined effects of an invasive shrub Lantana camara L. (lantana), seasonal rainfall and species' microsite preferences on the growth and survival of 1,105 naturally established seedlings of native trees and shrubs in a seasonally dry tropical forest. Individuals were followed from April 2008 to February 2010, and growth and survival measured in relation to lantana density, seasonality of rainfall and species characteristics in a 50-ha permanent forest plot located in Mudumalai, southern India. We used a mixed effects modelling approach to examine seedling growth and generalized linear models to examine seedling survival. The overall relative height growth rate of established seedlings was found to be very low irrespective of the presence or absence of dense lantana. 22-month growth rate of dry forest species was lower under dense lantana while moist forest species were not affected by the presence of lantana thickets. 4-month growth rates of all species increased with increasing inter-census rainfall. Community results may be influenced by responses of the most abundant species, Catunaregam spinosa, whose growth rates were always lower under dense lantana. Overall seedling survival was high, increased with increasing rainfall and was higher for species with dry forest preference than for species with moist forest preference. The high survival rates of naturally established seedlings combined with their basal sprouting ability in this forest could enable the persistence of woody species in the face of invasive species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical dry forests and savannas constitute more than half of all tropical forests and grasslands, but little is known about forest fire regimes within these two extensive types of ecosystems. Forest fire regimes in a predominantly dry forest in India, the Nilgiri landscape, and a predominantly savanna ecosystem in the Sathyamangalam landscape, were examined. Remote sensing data were applied to delineate burned areas, determine fire size characteristics, and to estimate fire-rotation intervals. Belt transects (0.5 ha) were used to estimate forest structure, diversity, and fuel loads. Mean area burned, mean number of fires, and mean fire size per year were substantially higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Mean fire-rotational interval was 7.1 yr in the Nilgiri landscape and 44.1 yr in the Sathyamangalam landscape. Tree (>= 10 cm diameter at breast height) species diversity, tree density, and basal area were significantly higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Total fuel loads were significantly higher in tropical dry and moist deciduous forests in the Nilgiri landscape, but total fuel loads were higher in the tropical dry thorn forests of the Sathyamangalam landscape. Thus, the two landscapes revealed contrasting fire regimes and forest characteristics, with more and four-fold larger fires in the Nilgiri landscape. The dry forests and savannas could be maintained by a combination of factors, such as fire, grazing pressures, and herbivore populations. Understanding the factors maintaining these two ecosystems will be critical for their conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel approach to solve the ordinal regression problem using Gaussian processes. The proposed approach, probabilistic least squares ordinal regression (PLSOR), obtains the probability distribution over ordinal labels using a particular likelihood function. It performs model selection (hyperparameter optimization) using the leave-one-out cross-validation (LOO-CV) technique. PLSOR has conceptual simplicity and ease of implementation of least squares approach. Unlike the existing Gaussian process ordinal regression (GPOR) approaches, PLSOR does not use any approximation techniques for inference. We compare the proposed approach with the state-of-the-art GPOR approaches on some synthetic and benchmark data sets. Experimental results show the competitiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a sparse modeling approach to solve ordinal regression problems using Gaussian processes (GP). Designing a sparse GP model is important from training time and inference time viewpoints. We first propose a variant of the Gaussian process ordinal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It performs model selection using the leave-one-out cross-validation (LOO-CV) technique. We then provide an approach to design a sparse model for GPOR. The sparse GPOR model reduces computational time and storage requirements. Further, it provides faster inference. We compare the proposed approaches with the state-of-the-art GPOR approach on some benchmark data sets. Experimental results show that the proposed approaches are competitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider multicast flow problems where either all of the nodes or only a subset of the nodes may be in session. Traffic from each node in the session has to be sent to every other node in the session. If the session does not consist of all the nodes, the remaining nodes act as relays. The nodes are connected by undirected edges whose capacities are independent and identically distributed random variables. We study the asymptotics of the capacity region (with network coding) in the limit of a large number of nodes, and show that the normalized sum rate converges to a constant almost surely. We then provide a decentralized push-pull algorithm that asymptotically achieves this normalized sum rate.