933 resultados para project analysis
Resumo:
This data on the distribution of the accumulation rate and 18O content of near-surface layers in the eastern part of the Ronne Ice Shelf, Antarctica, were derived from an analysis of 16 firn cores. The firn cores were drilled along the traverse route of the Filchner-V-Campaign in 1995. The traverse followed an ice flowline of the Foundation Ice Stream and reached the margin of the inland ice, an area which has not yet been investigated. On the ice shelf the accumulation rates decrease with distance from the coast. Ascending to the inland ice the accumulation rates again reach almost coastal values. This regional distribution is in agreement with the temperature gradient along the traverse. The 18O content of the near-surface layers is closely related to the 10 m firn temperature. They strongly decrease from the grounding line towards the inland ice. At the southernmost site at 1100 m a.s.l., the mean d18O value of the firn decreases to -40?. Ice with that isotopic signature was found in cores from the central part of the Ronne Ice Shelf just above the marine ice layer, indicating that it originates from this area. All ice deposited as snow further south was melted beneath the ice shelf after passing the grounding-line area. The time series of accumulation rate and 18O content reveal no climatic trend during the last 30-50 years.
Resumo:
Methane carbon-isotopic compositions (d13C values relative to the PDB standard) at Sites 565, 566, 567, and 569 were lighter (enriched in 12C) than -60 per mil, indicating a biogenic origin. In the deeper sections at Sites 568 and 570, d13C values were heavier, approaching -40 per mil, and therefore suggest a thermogenic source. A significant thermogenic source was discounted, however, because the carbon dioxide d13C values in these sections were also anomalously heavy, suggesting that the methane may have formed biogenically by reduction of the heavy carbon dioxide. d13C values of ethane and higher hydrocarbons were measured in several sections from Sites 566 and 570 that contained sufficient C2-C4 hydrocarbon concentrations. Ethane values in six sections (245-395 m sub-bottom) from Site 570 were fairly uniform, ranging from -24 to -26 per mil. These values are among the heaviest ethane values reported for natural gases. The isobutane/ n-butane and isopentane/n-pentane ratios of the core gases suggested that the C2-C5 hydrocarbons are thermally produced by low-temperature chemical diagenesis of indigenous organic matter. This process apparently generates isotopically heavy C2-C5 hydrocarbons. High gas concentrations in the serpentinite basement rocks at Sites 566 and 570 appear to have resulted from migrated biogenic methane gas containing small amounts of immature C2-C5 hydrocarbons.
Resumo:
Date-32 is a fast and easily used computer program developed to date Quaternary deep-sea cores by associating variations in the earth's orbit with recurring oscillations in core properties, such as carbonate content or isotope composition. Starting with known top and bottom dates, distortions in the periodicities of the core properties due to varying sedimentation rates are realigned by fast Fourier analysis so as to maximise the spectral energy density at the orbital frequencies. This allows age interpolation to all parts of the core to an accuracy of 10 kyrs, or about 1.5% of the record duration for a typical Brunhes sequence. The influence of astronomical forcing is examined and the method is applied to provide preliminary dates in a high-resolution Brunhes record from DSDP Site 594 off southeastern New Zealand.
Resumo:
The onset of abundant ice-rafted debris (IRD) deposition in the Nordic Seas and subpolar North Atlantic Ocean 2.72 millions of years ago (Ma) is thought to record the Pliocene onset of major northern hemisphere glaciation (NHG) due to a synchronous advance of North American Laurentide, Scandinavian and Greenland ice-sheets to their marine calving margins during marine isotope stage (MIS) G6. Numerous marine and terrestrial records from the Nordic Seas region indicate that extensive ice sheets on Greenland and Scandinavia increased IRD inputs to these seas from 2.72 Ma. The timing of ice-sheet expansion on North America as tracked by IRD deposition in the subpolar North Atlantic Ocean, however, is less clear because both Europe and North America are potential sources for icebergs in this region. Moreover, cosmogenic-dating of terrestrial tills on North America indicate that the Laurentide Ice Sheet did not extend to ~39°N until 2.4 ±0.14 Ma, at least 180 ka after the onset of major IRD deposition at 2.72 Ma. To address this problem,we present the first detailed analysis of the geochemical provenance of individual sand-sized IRD deposited in the subpolar North Atlantic Ocean between MIS G6 and 100 (~2.72-2.52 Ma). IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single ice-rafted (>150 mm) feldspar grains. To track when an ice-rafting setting consistent with major NHG first occurred in the North Atlantic Ocean during the Pliocene intensification of NHG (iNHG), we investigate when the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) of feldspars deposited at DSDP Site 611 first resembles that determined for IRD deposited at this site during MIS 100, the oldest glacial for which there exists convincing evidence for widespread glaciation of North America. Whilst Quaternary-magnitude IRD fluxes exist at Site 611 during glacials from 2.72 Ma, we find that the provenance of this IRD is not constant. Instead, we find that the Pb isotope composition of IRD at our study site is not consistent with major NHG until MIS G2 (2.64 Ma). We hypothesise that IRD deposition in the North Atlantic Ocean prior to MIS G2 was dominated by iceberg calving from Greenland and Scandinavia. We further suggest that the grounding line of continental ice on Northeast America may not have extended onto the continental shelf and calved significant numbers of icebergs to the North Atlantic Ocean during glacials until 2.64 Ma.
Resumo:
Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae.
Resumo:
Manganese nodules research has focused on the area between the Clarion Fracture Zone to the North and the Clipperton Fracture Zone to the South where significant concentrations were found ni Ni-Cu. During the CCOP/SOPAC-IOC/IDOE International workshop on the "Geology Mineral Resources and Geophysics of the South Pacific" held in Fiji in September 1975, a working group on manganese nodules was formed by scientists from: CNEXO, Brest, the Institute of Oceanography, New Zealand, Imperial College, London and the Technical University of Aachen. A draft project was presented in July 1976 by J. Andrews, University of Hawaii and G. Pautot, Cnexo on a joint survey under the name of: "Hawaii-Tahiti Transect program". Further details were worked on in September 1976 during the International Geological Congress in Sydney with the participation of D. Cronan, Imperial College, Glasby, New Zealand Geological Survey and G. Friedrich, Aachen TU. The scientific final program was established in July 1977, planning on the participation of three research vessels: the Suroit (CNEXO), the Kana Keoki (U. of Hawaii) and the Sonne (Aachen TU). Several survey areas were selected across the Pacific Ocean (Areas A, B, C, D, E, F, G and H) with about the same crustal age (about 40 million years) and a similar water depths. Being near large fault zones, the ares would be adequate to study the influences of biological productivity, sedimentation rate and possibly volcanic activity on the formation and growth of manganese nodules. The influnece of volcanic activity study would particularly apply to area G being situated near the Marquesas Fracture Zone. The cruise from R/V Sonne started in August 1978 over areas C, D, F, G K. The R/V suroit conducted a similar expedition in 1979 over areas A, B, C, D, E, H and I. Others cruises were planned during the 1979-1980 for the R/V Kana Keoki. The present text relates the R/V Sonne Cruises SO-06/1 and SO-06/2 held within the frame work of this international cooperative project.
Resumo:
Sediments in the area of the Galapagos hydrothermal mounds are divided into two major categories. The first group, pelagic sediments, are nannofossil oozes with varying amounts of siliceous microfossils. The second group are hydrothermal sediments consisting of manganese-oxide crust fragments and green nontronitic clay granules. Hydrothermal sediments occur only in the upper half to two-thirds of the cores and are interbedded and mixed with pelagic sediments. Petrologic evidence indicates that hydrothermal nontronite forms as both a primary precipitate and as a replacement mineral of pre-existing pelagic sediment and hydrothermal manganese-oxide crust fragments. In addition, physical evidence supports chemical equations indicating that the pelagic sediments are being dissolved by hydrothermal solutions. The formation of hydrothermal nontronite is not merely confined to the surface of mounds, but also occurs at depth within their immediate area; hydrothermal nontronite is very likely forming today. Geologically speaking, the mounds and their hydrothermal sediments form almost instantaneously. The Galapagos mounds area is a unique one in the ocean basins, where pelagic sediments can be diagenetically transformed, dissolved, and replaced, possibly within a matter of years.
Resumo:
The quantity, type, and maturity of the organic matter in Recent through Upper Jurassic sediments from the Falkland Plateau, DSDP Site 511, have been determined. Sediments were investigated for their hydrocarbon potential by organic carbon and Rock-Eval pyrolysis. Kerogen concentrates were prepared and analyzed in reflected and transmitted light to determine vitrinite reflectance and maceral content. Total extractable organic compounds were analyzed for their elemental composition, and the fraction of the nonaromatic hydrocarbons was determined by capillary column gas chromatography and combined gas chromatography/mass spectrometry. Three main classes of organic matter can be determined at DSDP Site 511 by a qualitative and quantitative evaluation of microscopic and geochemical results. The Upper Jurassic to lower Albian black shales contain high amounts of organic matter of dominantly marine origin. The content of terrigenous organic matter increases at the base of the black shales, whereas the shallowest black shales near the Aptian/Albian boundary are transitional in composition, with increasing amounts of inert, partly oxidized organic matter which is the dominant component in all Albian through Tertiary sediments investigated. The organic matter in the black shales has a low level of maturity and has not yet reached the onset of thermal hydrocarbon generation. This is demonstrated by the low amounts of total extractable organic compounds, low percentages of hydrocarbons, and the pattern and composition of nonaromatic hydrocarbons. The observed reflectance of huminite and vitrinite particles (between 0.4% and 0.5% Ro at bottom-hole depth of 632 m) is consistent with this interpretation. Several geochemical parameters indicate, however, a rapid increase in the maturation of organic matter with depth of burial. This appears to result from the relatively high heat flow observed at Site 511. If we relate the level of maturation of the black shales at the bottom of Hole 511 to their present shallow depth of burial, they appear rather mature. On the basis of comparisons with other sedimentary basins of a known geothermal history, a somewhat higher paleotemperature gradient and/or additional overburden are required to give the observed maturity at shallow depth. A comparison with contemporaneous sediments of DSDP Site 361, Cape Basin, which was the basin adjacent and to the north of the Falkland Plateau during the early stages of the South Atlantic Ocean, demonstrates differences in sedimentological features and in the nature of sedimentary organic matter. We interpret these differences to be the result of the different geological settings for Sites 361 and 511.
Resumo:
A high resolution mixed carbonate and siliciclastic sequence from DSDP Site 594 contains a detailed record of climate change in the late Pliocene. The sequence can be accurately dated by the LAD of Nitzschia weaveri, the LAD of Thalassiosira insigna, the LAD of T. vulnifica and the LAD of T. kolbei diatom datums. Carbonate content and delta18O signatures provide added resolution and place the sequence between isotope stage 100 and 92. The sequence contains well-preserved and diverse dinoflagellate cyst floras. Use of principal component (PCA) and canonical correspondence analyses (CCA) identifies changes in the assemblages that principally reflect warming and cooling trends. Species association with warmer climates included Impagidinium patulum, I. paradoxum and I. sp. cf. paradoxum while those from cooler climates include Invertecysta tabulata and I. velorum. CCA is shown to be a valuable method of determining the past environmental preferences of extinct species such as I. tabulata.
Resumo:
A history of Mesozoie and Cenozoic palaeoenvironments of the North Atlantie Oeean has been developed based on a detailed analysis of the temporal and spatial distribution of major pelagie sediment facies, of hiatuses. of bulk sediment accumulation rates, and of concentrations and fluxes of the main deep-sea sediment components. The depositional history of the North Atlantic can be subdivided into three major phase: (a) Late Jurassie and Early Cretaceous phase: clastic terrigenous and biogenic pelagic sediment components accumulated rapidly under highly productive surface water masses over the entire occan basin; (b) Late Cretaceous to Early Miocene phase: relatively little terrigenous and pelagic biogenic sediment reached the North Atlantic Ocean floor, intensive hiatus formation occurred at variable rates, and wide stretches of the deep-ocean floor were covered by slowly accumulating terrigenous muds: (c) Middle Miocene to Recent phase: accumulation rates of biogenic and terrigenous deep-sea sediment components increased dramatically up to Quaternary times, rates of hiatus formation and the intensity of deep-water circulation inferred from them seem to have decreased. However, accumulation rate patterns of calcareous pelagic sediment components suggest that large scale reworking and di splacement of deep-sea sediments occurred at a variable rate over wide areas of the North Atlantic during this period.
Resumo:
We provide high-resolution sea surface temperature (SST) and paleoproductivity data focusing on Termination 1. We describe a new method for estimating SSTs based on multivariate statistical analyses performed on modern coccolithophore census data, and we present the first downcore reconstructions derived from coccolithophore assemblages at Ocean Drilling Project (ODP) Site 1233 located offshore Chile. We compare our coccolithophore SST record to alkenone-based SSTs as well as SST reconstructions based on dinoflagellates and radiolaria. All reconstructions generally show a remarkable concordance. As in the alkenone SST record, the Last Glacial Maximum (LGM, 19-23 kyr B.P.) is not clearly defined in our SST reconstruction. After the onset of deglaciation, three major warming steps are recorded: from 18.6 to 18 kyr B.P. (~2.6°C), from 15.7 to 15.3 kyr B.P. (~2.5°C), and from 13 to 11.4 kyr B.P. (~3.4°C). Consistent with the other records from Site 1233 and Antarctic ice core records, we observed a clear Holocene Climatic Optimum (HCO) from ~8-12 kyr B.P. Combining the SST reconstruction with coccolith absolute abundances and accumulation rates, we show that colder temperatures during the LGM are linked to higher coccolithophore productivity offshore Chile and warmer SSTs during the HCO to lower coccolithophore productivity, with indications of weak coastal upwelling. We interpret our data in terms of latitudinal displacements of the Southern Westerlies and the northern margin of the Antarctic Circumpolar Current system over the deglaciation and the Holocene.
Resumo:
Ocean drilling has revealed that, although a minor mineral phase, native Cu ubiquitously occurs in the oceanic crust. Cu isotope systematics for native Cu from a set of occurrences from volcanic basement and sediment cover of the oceanic crust drilled at several sites in the Pacific, Atlantic and Indian oceans constrains the sources of Cu and processes that produced Cu**0. We propose that both hydrothermally-released Cu and seawater were the sources of Cu at these sites. Phase stability diagrams suggest that Cu**0 precipitation is favored only under strictly anoxic, but not sulfidic conditions at circum-neutral pH even at low temperature. In the basaltic basement, dissolution of primary igneous and potentially hydrothermal Cu-sulfides leads to Cu**0 precipitation along veins. The restricted Cu-isotope variations (delta 65Cu = 0.02-0.19 per mil) similar to host volcanic rocks suggest that Cu**0 precipitation occurred under conditions where Cu+-species were dominant, precluding Cu redox fractionation. In contrast, the Cu-isotope variations observed in the Cu**0 from sedimentary layers yield larger Cu-isotope fractionation (delta 65Cu = 0.41-0.95 per mil) suggesting that Cu**0 precipitation involved redox processes during the diagenesis, with potentially seawater as the primary Cu source. We interpret that native Cu precipitation in the basaltic basement is a result of low temperature (20°-65 °C) hydrothermal processes under anoxic, but not H2S-rich conditions. Consistent with positive delta 65Cu signatures, the sediment cover receives major Cu contribution from hydrogenous (i.e., seawater) sources, although hydrothermal contribution from plume fallout cannot be entirely discarded. In this case, disseminated hydrogenous and/or hydrothermal Cu might be diagenetically remobilized and reprecipitated as Cu**0 in reducing microenvironment.