926 resultados para present participles
Resumo:
Joining (J) chain is a component of polymeric, but not monomeric, immunoglobulin (Ig) molecules and may play a role in their polymerization and transport across epithelial cells. To date, study of the J chain has been confined to vertebrates that produce Ig and in which the J chain displays a considerable degree of structural homology. The role of the J chain in Ig polymerization has been questioned and, since the J chain can be expressed in lymphoid cells that do not produce Ig, it is possible that the J chain may have other functions. To explore this possibility, we have surveyed J-chain gene, mRNA, and protein expression by using reverse transcriptase-coupled PCR, Northern blot analysis, and immunoblot analysis in invertebrate species that do not produce Ig. We report that the J-chain gene is expressed in invertebrates (Mollusca, Annelida, Arthropoda, Echinodermata, and Holothuroidea), as well as in representative vertebrates (Mammalia, Teleostei, Amphibia). Furthermore, J-chain cDNA from the earthworm has a high degree of homology (68-76%) to human, mouse, and bovine J chains. Immunohistochemical studies reveal that the J chain is localized in the mucous cells of body surfaces, intestinal epithelial cells, and macrophage-like cells of the earthworm and slug. This study suggests that the J chain is a primitive polypeptide that arose before the evolution of Ig molecules and remains highly conserved in extent invertebrates and vertebrates.
Resumo:
Based on our previous transgenic mice results, which strongly suggested that separate cell-specific cis-acting elements of the mouse pro-alpha 1(I) collagen promoter control the activity of the gene in different type I collagen-producing cells, we attempted to delineate a short segment in this promoter that could direct high-level expression selectively in osteoblasts. By generating transgenic mice harboring various fragments of the promoter, we identified a 117-bp segment (-1656 to -1540) that is a minimal sequence able to confer high-level expression of a lacZ reporter gene selectively in osteoblasts when cloned upstream of the proximal 220-bp pro-alpha 1(I) promoter. This 220-bp promoter by itself was inactive in transgenic mice and unable to direct osteoblast-specific expression. The 117-bp enhancer segment contained two sequences that appeared to have different functions. The A sequence (-1656 to -1628) was required to obtain expression of the lacZ gene in osteoblasts, whereas the C sequence (-1575 to -1540) was essential to obtain consistent and high-level expression of the lacZ gene in osteoblasts. Gel shift assays showed that the A sequence bound a nuclear protein present only in osteoblastic cells. A mutation in the A segment that abolished the binding of this osteoblast-specific protein also abolished lacZ expression in osteoblasts of transgenic mice.
Resumo:
Monoclonal antibody MAb K1 recognizes a 40-kDa glycoprotein present on the surface of mesothelial cells, mesotheliomas, and ovarian cancers. We have used MAb K1 to isolate a 2138-bp cDNA that encodes this antigen. The cDNA has an 1884-bp open reading frame encoding a 69-kDa protein. When the cDNA was transfected into COS and NIH 3T3 cells, the antigen was found on the cell surface and could be released by treatment with phosphatidylinositol-specific phospholipase C. The 69-kDa precursor is processed to the 40-kDa form. The protein has been named mesothelin because it is made by mesothelial cells. Mesothelin may play a role in cellular adhesion.
Resumo:
The trinucleotide/amino acid relationships of the present-day genetic code are established by the amino-acylation reactions of tRNA synthetases, whereby each of 20 specific amino acids is attached to its cognate tRNAs, which bear anticodon trinucleotides. Because of its universality, the appearance of the modern genetic code is thought to predate the separation of prokaryotic and eukaryotic organisms in the universal phylogenetic tree. In the light of new sequence information, we present here a phylogenetic analysis that shows an unusual picture for tyrosyl- and tryptophanyl-tRNA synthetases. Ij particular, the eukaryotic tyrosyl- and tryptophanyl-tRNA synthetases are more related to each other than to their respective prokaryotic counterparts. In contrast, each of the other 18 eukaryotic synthetases is more related to its prokaryotic counterpart than to any eukaryotic synthetase specific for a different amino acid. Our results raise the possibility that present day tyrosyl- and tryptophanyl-tRNA synthetases appeared after the separation of nucleated cells from eubacteria. The results have implications for the development of the genetic code.
Resumo:
We have identified and further characterized a Caenorhabditis elegans gene, CEZF, that encodes a protein with substantial homology to the zinc finger and leucine zipper motifs of the human gene products AF10, MLLT6, and BR140. The first part of the zinc finger region of CEZF has strong similarity to the corresponding regions of AF10 (66%) and MLLT6 (64%) at the cDNA level. As this region is structurally different from previously described zinc finger motifs, sequence homology searches were done. Twenty-five other proteins with a similar motif were identified. Because the functional domain of this motif is potentially disrupted in leukemia-associated chromosomal translocations, we propose the name of leukemia-associated protein (LAP) finger. On the basis of these comparisons, the LAP domain consensus sequence is Cys1-Xaa1-2-Cys2-Xaa9-21-Cys3-Xaa2-4 -Cys4-Xaa4-5-His5-Xaa2-Cys6-Xaa12-46 - Cys7-Xaa2-Cys8, where subscripted numbers represent the number of amino acid residues. We review the evidence that this motif binds zinc, is the important DNA-binding domain in this group of regulatory proteins, and may be involved in leukemogenesis.
Resumo:
In central neurons, monamine neurotransmitters are taken up and stored within two distinct classes of regulated secretory vesicles: small synaptic vesicles and large dense core vesicles (DCVs). Biochemical and pharmacological evidence has shown that this uptake is mediated by specific vesicular monamine transporters (VMATs). Recent molecular cloning techniques have identified the vesicular monoamine transporter (VMAT2) that is expressed in brain. This transporter determines the sites of intracellular storage of monoamines and has been implicated in both the modulation of normal monoaminergic neurotransmission and the pathogenesis of related neuropsychiatric disease. We used an antiserum against VMAT2 to examine its ultrastructural distribution in rat solitary tract nuclei, a region that contains a dense and heterogeneous population of monoaminergic neurons. We find that both immunoperoxidase and immunogold labeling for VMAT2 localize to DCVs and small synaptic vesicles in axon terminals, the trans-Golgi network of neuronal perikarya, tubulovesicles of smooth endoplasmic reticulum, and potential sites of vesicular membrane recycling. In axon terminals, immunogold labeling for VMAT2 was preferentially associated with DCVs at sites distant from typical synaptic junctions. The results provide direct evidence that a single VMAT is expressed in two morphologically distinct types of regulated secretory vesicles in central monoaminergic neurons.
Resumo:
In the tumor-bearing host, T cells invariably fail to induce a clinically significant antitumor immune response. Although model systems support the existence of tumor peptide antigens, the molecular interactions critical for antigen presentation by the tumor cell remain unresolved. Here, we demonstrate that human follicular lymphoma cells are highly inefficient at presenting alloantigen despite their strong expression of major histocompatibility complex and low-to-intermediate expression of some adhesion and B7 costimulatory molecules. Activation of follicular lymphoma cells via CD40 induces or up-regulates both adhesion and B7 costimulatory molecules essential to repair this defect. More importantly, once primed, alloreactive T cells efficiently recognize unstimulated follicular lymphoma cells. Thus, correction of defective tumor immunity requires not only expression of major histocompatibility complex but also sufficient expression of multiple adhesion and costimulatory molecules.
Resumo:
Polysialic acid is a developmentally regulated posttranslational modification of the neural cell adhesion molecule (N-CAM). It has been suggested that this large anionic carbohydrate modulates the adhesive property of N-CAM, but the precise function of polysialic acid is not known. Here we describe the isolation and functional expression of a cDNA encoding a human polysialyltransferase. For this expression cloning, COS-1 cells were cotransfected with a human fetal brain cDNA library and a cDNA encoding human N-CAM. Transfected COS-1 cells were stained with a monoclonal antibody specific for polysialic acid and enriched by fluorescence-activated cell sorting. Sibling selection of recovered plasmids resulted in a cDNA clone that directs the expression of polysialic acid on the cell surface. The deduced amino acid sequence indicates that the polysialyltransferase shares a common sequence motif with other sialyltransferases cloned so far. The polysialyltransferase is, however, distinct by having two clusters of basic amino acids. The amount of the polysialyltransferase transcripts correlates well with the formation of polysialic acid in various human tissues, and is abundant in the fetal brain but not in the adult brain. Moreover, HeLa cells stably expressing polysialic acid and N-CAM promoted neurite outgrowth and sprouting. These results indicate that the cloned polysialyltransferase forms polysialylated, embryonic N-CAM, which is critical for plasticity of neural cells.
Resumo:
ADP ribosylation factor (ARF) is a small guanosine triphosphate (GTP)-binding protein that regulates the binding of coat proteins to membranes and is required for several stages of vesicular transport. ARF also stimulates phospholipase D (PLD) activity, which can alter the lipid content of membranes by conversion of phospholipids into phosphatidic acid. Abundant PLD activity was found in Golgi-enriched membranes from several cell lines. Golgi PLD activity was greatly stimulated by ARF and GTP analogs and this stimulation could be inhibited by brefeldin A (BFA), a drug that blocks binding of ARF to Golgi membranes. Furthermore, in Golgi membranes from BFA-resistant PtK1 cells, basal PLD activity was high and not stimulated by exogenous ARF or GTP analogs. Thus, ARF activates PLD on the Golgi complex, suggesting a possible link between transport events and the underlying architecture of the lipid bilayer.
Resumo:
MyoD, a member of the family of helix-loop-helix myogenic factors that plays a crucial role in skeletal muscle differentiation, is a nuclear phosphoprotein. Using microinjection of purified MyoD protein into rat fibroblasts, we show that the nuclear import of MyoD is a rapid and active process, being ATP and temperature dependent. Two nuclear localization signals (NLSs), one present in the basic region and the other in the helix 1 domain of MyoD protein, are demonstrated to be functional in promoting the active nuclear transport of MyoD. Synthetic peptides spanning these two NLSs and biochemically coupled to IgGs can promote the nuclear import of microinjected IgG conjugates in muscle and nonmuscle cells. Deletion analysis reveals that each sequence can function independently within the MyoD protein since concomittant deletion of both sequences is required to alter the nuclear import of this myogenic factor. In addition, the complete cytoplasmic retention of a beta-galactosidase-MyoD fusion mutant protein, double deleted at these two NLSs, argues against the existence of another functional NLS motif in MyoD.
Resumo:
The rise and growth of large Jewish law firms in New York City during the second half of the twentieth century was nothing short of an astounding success story. As late as 1950, there was not a single large Jewish law firm in town. By the mid-1960s, six of the largest twenty law firms were Jewish, and by 1980, four of the largest ten prestigious law firms were Jewish firms. Moreover, the accomplishment of the Jewish firms is especially striking because, while the traditional large White Anglo-Saxon Protestant law firms grew at a fast rate during this period, the Jewish firms grew twice as fast, and they did so in spite of experiencing explicit discrimination. What happened? This book chapter is a revised, updated study of the rise and growth of large New York City Jewish law firms. It is based on the public record, with respect to both the law firms themselves and trends in the legal profession generally, and on over twenty in-depth interviews with lawyers who either founded and practiced at these successful Jewish firms, attempted and failed to establish such firms, or were in a position to join these firms but decided instead to join WASP firms. According to the informants interviewed in this chapter, while Jewish law firms benefited from general decline in anti-Semitism and increased demand for corporate legal services, a unique combination of factors explains the incredible rise of the Jewish firms. First, white-shoe ethos caused large WASP firms to stay out of undignified practice areas and effectively created pockets of Jewish practice areas, where the Jewish firms encountered little competition for their services. Second, hiring and promotion discriminatory practices by the large WASP firms helped create a large pool of talented Jewish lawyers from which the Jewish firms could easily recruit. Finally, the Jewish firms benefited from a flip side of bias phenomenon, that is, they benefited from the positive consequences of stereotyping. Paradoxically, the very success of the Jewish firms is reflected in their demise by the early twenty-first century: because systematic large law firm ethno-religious discrimination against Jewish lawyers has become a thing of the past, the very reason for the existence of Jewish law firms has been nullified. As other minority groups, however, continue to struggle for equality within the senior ranks of Big Law, can the experience of the Jewish firms serve as a “separate-but-equal” blueprint for overcoming contemporary forms of discrimination for women, racial, and other minority attorneys? Perhaps not. As this chapter establishes, the success of large Jewish law firms was the result of unique conditions and circumstances between 1945 and 1980, which are unlikely to be replicated. For example, large law firms have become hyper-competitive and are not likely to allow any newcomers the benefit of protected pockets of practice. While smaller “separate-but-equal” specialized firms, for instance, ones exclusively hiring lawyer-mothers occasionally appear, the rise of large “separate-but-equal” firms is improbable.
Resumo:
This paper examines both theoretical and practical issues related to conversion. A quite detailed characterization of the 5329 instances identified in a 300.000-word corpus of American English written in the late 90s is provided. The examples are grouped according to the type of conversion involved. Frequency and the internal structure of words are also considered and compared with the results obtained by earlier scholars. In spite of the limitations that a corpus study imposes, the conclusions obtained seem to suggest that any item, independent of its morphological structure, may undergo conversion and this may happen in any register. Moreover, conversion seems to be an important source of new items in American English nowadays.
Resumo:
In this article, the past and the state-of-the-art in Three-Way Catalyst (TWC) technology are reviewed. The main chemical reactions occurring in a gasoline engine are discussed and also the main reactions taking place in a TWC placed in the tailpipe, namely CO and hydrocarbons oxidation and nitrogen oxides reduction to molecular nitrogen. The main components of a TWC (substrates, noble metals and cerium oxides) and their role in the different chemical reactions occurring in a TWC are described. Finally, the problem of diesel vehicles gas aftertratment is described, and the current state-of-the art in catalytic converters for these vehicles are commented.