917 resultados para photovoltaic
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This paper presents a multi-agent system for real-time operation of simulated microgrid using the Smart-Grid Test Bed at Washington State University. The multi-agent system (MAS) was developed in JADE (Java Agent DEvelopment Framework) which is a Foundation for Intelligent Physical Agents (FIPA) compliant open source multi-agent platform. The proposed operational strategy is mainly focused on using an appropriate energy management and control strategies to improve the operation of an islanded microgrid, formed by photovoltaic (PV) solar energy, batteries and resistive and rotating machines loads. The focus is on resource management and to avoid impact on loads from abrupt variations or interruption that changes the operating conditions. The management and control of the PV system is performed in JADE, while the microgrid model is simulated in RSCAD/RTDS (Real-Time Digital Simulator). Finally, the outcome of simulation studies demonstrated the feasibility of the proposed multi-agent approach for real-time operation of a microgrid.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Acionamento de dois sistemas de bombeamento alimentados por uma central de microgeração fotovoltaica
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The solar energy is far the largest source of energy available in earth and has attracted for milleniuns, the attention and interest for a rational use. The solar energy which strikes the Earth in one hour is bigger than the whole consume of energy in Earth in one year. Among the forms of transformation of this clean, renewable energy, the electrical conversion, photovoltaic cells, have the materials based on silicon or germanium semiconductors due to its technology and production processes involved still have a high production cost. An alternative to this solar cell is based on a synthetic dye and a semiconductor nanocrystalline TiO2, titanium dioxide, called DSC (Dye-Sensitized Cells), which have a cost of up to 80% lower than silicon cells
Resumo:
Due to the high value of the bill that the Brazilian has been paying, one of the most expensive in the world, is becoming increasingly attractive the option for renewable energy in form of distributed micro and minigeneration. In other words, the renewable energy sources are becoming attractive not only because of environmental concerns, but also due to economic issues. This has become even more relevant and concrete after approval of rules by National Agency of Electric Energy (ANEEL) on 4/17/2012 (Normative Resolution n ° 482/2012 of 04/17/2012) aimed at reducing barriers to installation of small distributed generation, including microgeneration, with up to 100 kW of power, and minigeneration, 100 kW to 1 MW. The Normative Resolution n ° 482/2012 creates the Energy Clearing System, which allows consumers to install small generators in its consumer unit and exchange energy with the local distributor. The rule applies to generators that use renewable sources of energy (hydro, solar, biomass, wind and cogeneration qualified). In this context, this paper presents a technical and economic analysis of installing a residential microgenerating plant composed of photovoltaic cells, solar panels and small wind turbines
Resumo:
The term refrigeration solar refers to any air conditioning system that uses solar energy as a primary energy source. The use of solar radiation for cooling purposes is divided according to their technological possibilities which are distinguished from one another as the way that energy is involved in the cycle, work or heat. The first case is related to vapor compression cycles, in which the work input is provided by the photovoltaic conversion of solar energy into electrical energy. In the second case, an absorption refrigeration cycle is used and the thermal energy collected from the solar radiation is provided at the generator of this cycle.. In this work a system with an absorption cycle using the pair BrLi-water, using solar energy as input is modeled. It is considered a simple refrigeration cycle whose the equations of mass and energy conservation in each component are developed in order to obtain an algebraic equation set and a simulation routine using the EES software. Although the simulation operates under certain specified thermal load it is possible to estimate the necessary areas of heat exchangers and solar collectors
Resumo:
This paper discusses the importance of energy efficiency and the use of alternative energy sources, facing to the increasing energy demand and the concomitant economic, social and environmental restrictions imposed by society. In this work, alternative sources are illustrated by photovoltaic, micro turbines and fuel cells microgeneration systems. Energy efficiency is presented by direct current microgrids because its uses excludes the conversions of direct current (DC) to alternating current (AC) losses made with the intention of injecting energy into the electric grid and then the inverse conversion, AC to DC, in order to feed residential loads. The object of this paper is to analyze a case study and evaluates the costs and technical feasibility of a Project that combines a DC microgrid and a microgeneration system
Resumo:
Due to the high value of the bill that the Brazilian has been paying, one of the most expensive in the world, is becoming increasingly attractive the option for renewable energy in form of distributed micro and minigeneration. In other words, the renewable energy sources are becoming attractive not only because of environmental concerns, but also due to economic issues. This has become even more relevant and concrete after approval of rules by National Agency of Electric Energy (ANEEL) on 4/17/2012 (Normative Resolution n ° 482/2012 of 04/17/2012) aimed at reducing barriers to installation of small distributed generation, including microgeneration, with up to 100 kW of power, and minigeneration, 100 kW to 1 MW. The Normative Resolution n ° 482/2012 creates the Energy Clearing System, which allows consumers to install small generators in its consumer unit and exchange energy with the local distributor. The rule applies to generators that use renewable sources of energy (hydro, solar, biomass, wind and cogeneration qualified). In this context, this paper presents a technical and economic analysis of installing a residential microgenerating plant composed of photovoltaic cells, solar panels and small wind turbines
Resumo:
This paper is about a case study of using solar energy and wind energy in a farm. For this purpose were collected from the property, such as water consumption and amount of residents. So, we estimate how many conventional panels or PET bottle panels and boiler needed to supply the farm with warm water. It also calculates the amount of photovoltaic panels and the main accessories for converting solar energy into electrical energy. For the pumping of water using photovoltaic panels is dismissed and dimensioned to be a watermill
Resumo:
Solar energy can be considered the largest source of energy available on earth and has attracted in recent decades, attention and interest for its rational use. The use of energy sources in a sustainable manner is essential to the survival of future generations, due to the scarcity of natural resources and their exploitation in a disorderly way. Studies related to the applications of renewable sources becomes then relevant, given its great importance as regards the conscious use of resources provided by nature, with the least possible impact on it. The present study presents an evaluation of generation potential and feasibility of implementing a solar photovoltaic connected to the grid and connected to the roofs of some buildings of the Faculty of Engineering of Guaratinguetá - FEG, to supply the demand of electric energy consumption on campus and attempting to inject a possible surplus power generation in local power grid, increasing network capacity and reducing peak loads
Resumo:
This work, based in a patent request at INPI, protocol no. 020110035974, presents a system development using solar panels to supply the electricity demand required by punctual loads, without a storage unit or utility grid synchronism, through a control circuit that allows parallel operation with the power grid during low sunlight incidence periods. A study about solar panel construction and topologies for Power generation was done, in a atempt to evalute impacts in project. This development was modular, providing the system the possibility of power capacity expansion and load diversity as well, in an attempt to reduce the total energy requirements from the residential sector drained from the power grid along the day