958 resultados para photorefractive and semiconductor materials
Resumo:
The objective of this research was to optimise the rheological parameters, hardened properties, and setting times of cement grouts containing metakaolin (MTK), viscosity-modifying agent (VMA) and superplasticiser (SP). All mixes were made with water-to-binder ratio (W/B) of 0.40. The replacement of cement by MTK was varied from 6% to 20% (by mass), and dosages of SP and VMA were varied from 0.3% to 1.4%, and 0.01% and 0.06% (by mass of binder), respectively. Increased SP led to an increase in fluidity, reduction in flow time, plate cohesion, rheological parameters, and an increase in the setting times. Increased VMA demonstrated a reduction in fluidity, an increase in Marsh cone time, plate cohesion, yield stress, and plastic viscosity. Results indicate that the use of MTK increased yield stress, plastic viscosity, cohesion plate, and flow time due to the higher surface area associated with an increase in the water demand. MTK reduced mini-slump and setting times, and improved compressive strength.
Resumo:
Aiming to establish a rigorous link between macroscopic random motion (described e.g. by Langevin-type theories) and microscopic dynamics, we have undertaken a kinetic-theoretical study of the dynamics of a classical test-particle weakly coupled to a large heat-bath in thermal equilibrium. Both subsystems are subject to an external force field. From the (time-non-local) generalized master equation a Fokker-Planck-type equation follows as a "quasi-Markovian" approximation. The kinetic operator thus defined is shown to be ill-defined; in specific, it does not preserve the positivity of the test-particle distribution function f(x, v; t). Adopting an alternative approach, previously introduced for quantum open systems, is proposed to lead to a correct kinetic operator, which yields all the expected properties. A set of explicit expressions for the diffusion and drift coefficients are obtained, allowing for modelling macroscopic diffusion and dynamical friction phenomena, in terms of an external field and intrinsic physical parameters.
Resumo:
We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule heating, current-induced forces including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight the importance of both current-induced forces and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature of these in the Raman signals.
Resumo:
We have performed density functional theory (DFT) calculations to investigate the reaction mechanism of the cleavage of the carbonyl bond in amides on both flat and stepped Ru surfaces. The simplest amide molecule, N,N-dimethylacetamide (DMA), was used as the exemplar model molecule. Through the calculations, the most stable transition states (TSs) in all the pathways on both flat and stepped Ru surfaces are identified. Comparing the energy profiles of different reaction pathways, we find that a direct cleavage mechanism is always energetically favored as compared with an alternative hydrogen-induced mechanism on either the flat or stepped Ru surface. It is easier for the dissociation process to occur on the stepped surface than on the flat surface. However, as compared with the terrace, the superiority of step sites boosting the C-O bond dissociation is not as evident as that on CO dissociation.
Resumo:
By depositing ceria over supported precious metal (PM) catalysts and characterizing them with in situ diffuse reflectance UV (DR UV) and in situ Raman spectroscopy, we have been able to prove a direct correlation between a decrease in ceria band gap and the work function of the metal under reducing conditions. The PM ceria interaction results in changes on the ceria side of the metal ceria interface, such that the degree of oxygen vacancy formation on the ceria surface also correlates with the precious metal work function. Nevertheless, conclusive evidence for a purely electronic interaction could not be provided by X-ray photoelectron spectroscopy (XPS) analysis. On the contrary, the results highlight the complexity of the PM ceria interaction by supporting a spillover mechanism resulting from the electronic interaction under reducing conditions. Under oxidizing conditions, another effect has been observed; namely, a structural modification of ceria induced by the presence of PM cations. In particular, we have been able to demonstrate by in situ Raman spectroscopy that, depending on the PM ionic radius, it is possible to create PM ceria solid solutions. We observed that this structural modification prevails under an oxidizing atmosphere, whereas electronic and chemical interactions take place under reducing conditions.
Resumo:
A new phase in the ternary Ir-Mn-Si system has been synthesised. From powder neutron diffraction data the crystal structure was determined to be of the AlAu4 type and to be described in the cubic space group P2(1)3 with the unit cell a = 6.4973(3) Angstrom. Susceptibility measurements using a SQUID-magnetometer showed a transition typical of anti ferromagnetism, with T-N = 210 K. Low temperature antiferromagnetic order is confirmed by extra peaks in neutron diffractograms recorded at 10 and 80 K. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Metal organic frameworks (MOFs) are highly porous materials that can store significant amounts of gas, including nitric oxide. The chemical composition and toxicology of many (but not all) of these materials makes them potentially suitable for medical applications. In this paper, we will describe how triggered release methods can be used to deliver biologically relevant amounts of NO and then show how Ni, Co and Cu-containing MOFs are biologically active materials with potential applications in several different areas (anti-thrombosis, dermatology and wound healing, anti-bacterial, vasodilation etc.). We will also discuss the pros and cons of MOFs, including their chemical and biological stability and the toxicology of MOFs in general. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (X10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.
Resumo:
Germanium is an attractive channel material for MOSFETs because of its higher mobility than silicon. In this paper, GeO2 has been investigated as an interfacial layer for high-kappa gate stacks on germanium. Thermally grown GeO2 layers have been prepared at 550 degrees C to minimise GeO volatilisation. GeO2 growth has been performed in both pure O-2 ambient and O-2 diluted with N-2. GeO2 thickness has been scaled down to approximately 3 nm. MOS capacitors have been fabricated using different GeO2 thicknesses with a standard high-kappa dielectric on top. Electrical properties and thermal stability have been tested up to at least 350 degrees C. The K value of GeO2 was experimentally determined to be 4.5. Interface state densities (D-it) of less than 10(12) CM-2 eV(-1) have been extracted for all devices using the conductance method.
Resumo:
The metallo-phthalocyanines (MPcs) are an interesting group of organic semiconductor materials for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPcs [1, 2]. As for organic semiconductors in general, many of the interesting properties of the MPcs such as magnetism, light absorption and charge transport, are highly anisotropic [2, 3]. To maximise the efficiency of a device based on these materials it is therefore important to study their molecular orientation in films and to assess the influence of different growth conditions and substrate treatments.
X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation) in crystalline materials, but it cannot provide any information about amorphous or nanocrystalline films. In electron paramagnetic resonance (EPR) spectroscopy the signal comes from the spin of unpaired electrons in the material. This technique therefore does not require the sample to be crystalline. It works for any sample with paramagnetic centres such as the MPcs where the unpaired electrons are contributed by the metal. In this paper we present a continuous-wave X-band EPR study using the anisotropy of the EPR spectrum of CuPc [4] to determine the orientation effects in different types of CuPc films. From these measurements we gain insight into the molecular arrangement of films with different spin concentrations, and apply our technique to the study of molecular orientation in photovoltaic cells.
Resumo:
The general properties of a frequency selective surface loaded with negative impedance converter (NIC)-based active loads are discussed from a theoretical perspective.The stability problem associated with NIC circuits embedded in artificial magnetic conductor (AMC) and AMC absorber applications is studied using pole-zero analysis. The requirements and constraints for achieving stable operation with enhanced bandwidth using negative capacitance as realized by a floating NIC network are derived. Furthermore, it is shown that it is nearly impossible to simultaneously implement a negative capacitor and a negative inductor to such structures. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:2111–2114, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27019