977 resultados para phosphatedycholine biosynthesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Food allergy has reached an epidemic level in westernized countries and although central mechanisms have been described, the variability associated with genetic diversity underscores the still unresolved complexity of these disorders. OBJECTIVE: To develop models of food allergy and oral tolerance, both strictly induced by the intestinal route, and to compare antigen-specific responses. METHODS: BALB/c mice were mucosally sensitized to ovalbumin (OVA) in the presence of the mucosal adjuvant cholera toxin, or tolerized by intra-gastric administrations of OVA alone. Antibody titres and cytokines were determined by ELISA, and allergic status was determined through several physiologic parameters including decline in temperature, diarrhoea, mast cell degranulation and intestinal permeability. RESULTS: OVA-specific antibodies (IgE, IgGs and IgA in serum and feces) were produced in sensitized mice exclusively. Upon intra-gastric challenge with OVA, sensitized mice developed anaphylactic reactions associated with a decline of temperature, diarrhoea, degranulation of mast cells, which were only moderately recruited in the small intestine, and increased intestinal permeability. Cytokines produced by immune cells from sensitized mice included T-helper type 2 cytokines (IL-5, IL-13), but also IL-10, IFN-gamma and IL-17. In contrast, all markers of allergy were totally absent in tolerized animals, and yet the latter were protected from subsequent sensitization, demonstrating that oral tolerance took place efficiently. CONCLUSION: This work allows for the first time an appropriate comparison between sensitized and tolerized BALB/c mice towards OVA. It highlights important differences from other models of allergy, and thus questions some of the generally accepted notions of allergic reactions, such as the protective role of IFN-gamma, the importance of antigen-specific secretory IgA and the role of mucosal mast cells in intestinal anaphylaxis. In addition, it suggests that IL-17 might be an effector cytokine in food allergy. Finally, it demonstrates that intestinal permeability towards the allergen is increased during challenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carcinoembryonic antigen (CEA) has been shown to be one of the best markers for in vivo tumor targeting of radiolabeled antibodies, despite the fact that it is localized predominantly at the apical side of human colon carcinoma cells within the fairly closed pseudolumen structures formed by these tumors. Due to this particular histological localization, a large proportion of the CEA molecules may remain inaccessible to the intravenously injected radiolabeled anti-CEA antibodies of IgG isotype, which are widely used in the clinic. In order to improve targeting, we made a recombinant dimeric IgA, which should have the capacity to translocate from the basolateral to the apical side of the pseudolumen formed by colon carcinoma cells after binding to the polyIg receptor (pIgR). A genomic chimeric mouse-human IgA2 construct was made using one of our most specific anti-CEA hybridomas, CE-25. The chimeric IgA (chIgA) was expressed in the Sp2/0 myeloma cell line. The secreted recombinant antibody was found to consist mostly of a dimeric form of IgA with a molecular weight of about 350 kDa. The dimeric chIgA was shown to translocate efficiently in vitro across a monolayer of epithelial cells expressing the pIgR and to retain full CEA binding activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lpr gene has recently been shown to encode a functional mutation in the Fas receptor, a molecule involved in transducing apoptotic signals. Mice homozygous for the lpr gene develop an autoimmune syndrome accompanied by massive accumulation of double-negative (DN) CD4-8-B220+ T cell receptor-alpha/beta+ cells. In order to investigate the origin of these DN T cells, we derived lpr/lpr mice lacking major histocompatibility complex (MHC) class I molecules by intercrossing them with beta 2-microglobulin (beta 2m)-deficient mice. Interestingly, these lpr beta 2m-/- mice develop 13-fold fewer DNT cells in lymph nodes as compared to lpr/lpr wild-type (lprWT) mice. Analysis of anti-DNA antibodies and rheumatoid factor in serum demonstrates that lpr beta 2m-/- mice produce comparable levels of autoantibodies to lprWT mice. Collectively our data indicate that MHC class I molecules control the development of DN T cells but not autoantibody production in lpr/lpr mice and support the hypothesis that the majority of DN T cells may be derived from cells of the CD8 lineage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a "death ligand"-a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-kappaB and JNK signalling pathways. To determine the role of TGF-beta-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1-/- MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-kappaB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-kappaB, protected TAK1-/- MEFs against TRAIL killing, suggesting that TAK1 activation of NF-kappaB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-kappaB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1-/- MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1-NF-kappaB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical trials with temozolomide plus bevacizumab therapy in metastatic melanoma patients are ongoing, although the predictive value of the MGMT promoter methylation status in this setting remains unclear. We assessed MGMT promoter methylation in formalin-fixed, primary tumor tissue of metastatic melanoma patients treated with first-line temozolomide and bevacizumab from the trial SAKK 50/07 by methylation-specific polymerase chain reaction. In addition, the MGMT expression levels were also analyzed by MGMT immunohistochemistry. Eleven of 42 primary melanomas (26%) revealed a methylated MGMT promoter. Promoter methylation was significantly associated with response rates CR + PR versus SD + PD according to RECIST (response evaluation criteria in solid tumors) (p<0.05) with a trend to prolonged median progression-free survival (8.1 versus 3.4 months, p>0.05). Immunohistochemically different protein expression patterns with heterogeneous and homogeneous nuclear MGMT expression were identified. Negative MGMT expression levels were associated with overall disease stabilization CR+PR+SD versus PD (p=0.05). There was only a poor correlation between MGMT methylation and lack of MGMT expression. A significant proportion of melanomas have a methylated MGMT promoter. The MGMT promoter methylation status may be a promising predictive marker for temozolomide therapy in metastatic melanoma patients. Larger sample sizes may help to validate significant differences in survival type endpoints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three subtypes of the peroxisome proliferator-activated receptors (PPARalpha, beta/delta, and gamma) form heterodimers with the 9-cis-retinoic acid receptor (RXR) and bind to a common consensus response element, which consists of a direct repeat of two hexanucleotides spaced by one nucleotide (DR1). As a first step toward understanding the molecular mechanisms determining PPAR subtype specificity, we evaluated by electrophoretic mobility shift assays the binding properties of the three PPAR subtypes, in association with either RXRalpha or RXRgamma, on 16 natural PPAR response elements (PPREs). The main results are as follows. (i) PPARgamma in combination with either RXRalpha or RXRgamma binds more strongly than PPARalpha or PPARbeta to all natural PPREs tested. (ii) The binding of PPAR to strong elements is reinforced if the heterodimerization partner is RXRgamma. In contrast, weak elements favor RXRalpha as heterodimerization partner. (iii) The ordering of the 16 natural PPREs from strong to weak elements does not depend on the core DR1 sequence, which has a relatively uniform degree of conservation, but correlates with the number of identities of the 5'-flanking nucleotides with respect to a consensus element. This 5'-flanking sequence is essential for PPARalpha binding and thus contributes to subtype specificity. As a demonstration of this, the PPARgamma-specific element ARE6 PPRE is able to bind PPARalpha only if its 5'-flanking region is exchanged with that of the more promiscuous HMG PPRE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosynthesis of active endothelin-1 (ET-1) implies an enzymatic processing of the inactive precursor Big ET-1 (1-39) into the mature, 21 amino acid peptide. The aim of this study was to characterize in airway and alveolar epithelial cells the enzymes responsible for this activation. BEAS-2B and A549 cells, which both produce ET-1, were studied in vitro as models for bronchiolar and alveolar cells, respectively. Both cell lines were able to convert exogenously added Big ET-1 (0.1 microM) into ET-1, suggesting a cell surface or an extracellular processing. The conversion was inhibited by phosphoramidon in both cell lines with an IC50 approximately 1 microM, but not by thiorphan, a specific inhibitor of neutral endopeptidase 24.11 (NEP). The endogenous production of serum-stimulated BEAS-2B and A549 cells was not inhibited by thiorphan, and phosphoramidon showed inhibition only at high concentration (>100 microM). Western blotting following electrophoresis in reducing conditions demonstrated a protein of MR 110 corresponding to the ECE-1 monomer in both BEAS-2B and A549 cells, as well as in whole lung extracts. By RT-PCR we revealed the mRNA encoding for the ECE-1b and/or -1c subtype, but not ECE-1a, in both cell lines. We conclude that BEAS-2B and A549 cells are able to process either endogenous or exogenous Big ET-1 by ECE-1 and that isoforms 1b and 1c could be involved in this processing with no significant role of NEP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis, differentiation, and proliferation are cellular responses which play a pivotal role in wound healing. During this process PPARbeta translates inflammatory signals into prompt keratinocyte responses. We show herein that PPARbeta modulates Akt1 activation via transcriptional upregulation of ILK and PDK1, revealing a mechanism for the control of Akt1 signaling. The resulting higher Akt1 activity leads to increased keratinocyte survival following growth factor deprivation or anoikis. PPARbeta also potentiates NF-kappaB activity and MMP-9 production, which can regulate keratinocyte migration. Together, these results provide a molecular mechanism by which PPARbeta protects keratinocytes against apoptosis and may contribute to the process of skin wound closure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two monoclonal antibodies (mAb) directed against idiotypic determinants of the T cell receptor (anti-Ti) from HPB-ALL cells induce interleukin 2 (IL2) production in Jurkat T cells without evidence of binding to these cells as judged by fluorescence-activated cell sorter (FACS) analysis, indirect antibody-binding radioimmunoassay and direct binding studies with 125I-labeled mAb. The IL2 response induced by these mAb observed both in the presence and absence of phorbol myristate acetate was in the range of that obtained when Jurkat cells were stimulated with phytohemagglutinin or anti-T3 mAb (Leu 4). The idiotypic specificity of the two anti-HPB-ALL Ti mAb was demonstrated by several criteria. Both mAb bound specifically to HPB-ALL cells as determined by radioimmunoassay or FACS analysis but not with 8 other T cell lines. The anti-HPB-ALL Ti mAb precipitated a disulfide-linked heterodimer of 85 kDa only from 125I-labeled HPB-ALL cells and not from other cell lines tested. Incubation of HPB-ALL cells with anti-T3 abrogated the expression of T3 and induced co-modulation of the idiotypic structures detected by the two anti-HPB-ALL Ti mAb. Conversely, incubation of HPB-ALL cells with either one of the anti-Ti mAb abrogated the expression of T3 and of the idiotypic structures. Our results suggest that mAb with an apparent unique specificity for the receptor of the immunizing T cell line HPB-ALL can activate Jurkat cells by a very weak cross-reaction with these cells, which is not detectable by conventional binding tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2''R, 4''R (pyochelin I) and 4'R, 2''S, 4''R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tolerance against superantigens (SAgs) encoded by endogenous mouse mammary tumor virus (Mtv) loci involves the intrathymic deletion of SAg-reactive T cells expressing a particular TCR V beta-chain, presumably upon presentation of the SAg by specialized APC. However, although the role of dendritic cells (DC) in the induction of tolerance against conventional Ags has been demonstrated, little is known about the role played by DC in tolerance induction against Mtv SAgs. Moreover, there is conflicting evidence concerning the capacity of DC to express and present Mtv SAgs. In this report we have analyzed the expression of Mtv SAgs in highly purified thymic and splenic DC and B cells by reverse transcriptase-PCR, using primers amplifying Mtv SAg-specific spliced mRNAs. DC express Mtv SAgs at levels comparable to B cells, but display a differential expression pattern of the various Mtv loci compared with B cells. Furthermore, our results show that DC are able to induce the deletion of SAg-reactive thymocytes in an in vitro assay, indicating that Mtv SAgs are functionally expressed on the DC surface. Collectively, our data are consistent with the hypothesis that DC play a role in the induction of intrathymic tolerance to Mtv SAgs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant-beneficial bacterium Pseudomonas brassicacearum forms phenotypic variants in vitro as well as in planta during root colonization under natural conditions. Transcriptome analysis of typical phenotypic variants using microarrays containing coding as well as noncoding DNA fragments showed differential expression of several genes relevant to secondary metabolism and of the small RNA (sRNA) genes rsmX, rsmY, and rsmZ. Naturally occurring mutations in the gacS-gacA system accounted for phenotypic switching, which was characterized by downregulation of antifungal secondary metabolites (2,4-diacetylphloroglucinol and cyanide), indoleacetate, exoenzymes (lipase and protease), and three different N-acyl-homoserine lactone molecules. Moreover, in addition to abrogating these biocontrol traits, gacS and gacA mutations resulted in reduced expression of the type VI secretion machinery, alginate biosynthesis, and biofilm formation. In a gacA mutant, the expression of rsmX was completely abolished, unlike that of rsmY and rsmZ. Overexpression of any of the three sRNAs in the gacA mutant overruled the pleiotropic changes and restored the wild-type phenotypes, suggesting functional redundancy of these sRNAs. In conclusion, our data show that phenotypic switching in P. brassicacearum results from mutations in the gacS-gacA system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xenopus laevis oocytes were used to assay for trans-acting factors shown previously to be involved in the liver-specific regulation of the vitellogenin genes in vitro. To this end, crude liver nuclear extracts obtained from adult estrogen-induced Xenopus females were fractionated by heparin-Sepharose chromatography using successive elutions with 0.1, 0.35, 0.6, and 1.0 M KCl. When these four fractions were injected into oocytes, only the 0.6-M KCl protein fraction significantly stimulated mRNA synthesis from the endogenous B class vitellogenin genes. This same fraction induced estrogen-dependent in vitro transcription from the vitellogenin B1 promoter, suggesting that it contains at least a minimal set of basal transcription factors as well as two positive factors essential for vitellogenin in vitro transcription, i.e. the NF-I-like liver factor B and the estrogen receptor (ER). The presence of these two latter factors was determined by footprinting and gel retardation assays, respectively. In contrast, injection of an expression vector carrying the sequence encoding the ER was unable to activate transcription from the oocyte chromosomal vitellogenin genes. This suggests that the ER alone cannot overcome tissue-specific barriers and that one or several additional liver components participate in mediating tissue-specific expression of the vitellogenin genes. In this respect, we present evidence that the oocyte germinal vesicles contain an NF-I-like activity different from that found in hepatocytes of adult frogs. This observation might explain the lack of vitellogenin gene activation in oocytes injected with the ER cDNA only.