905 resultados para perturbation techniques
Resumo:
In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.
Resumo:
In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.
Resumo:
Splitting techniques are commonly used when large-scale models, which appear in different fields of science and engineering, are treated numerically. Four types of splitting procedures are defined and discussed. The problem of the choice of a splitting procedure is investigated. Several numerical tests, by which the influence of the splitting errors on the accuracy of the results is studied, are given. It is shown that the splitting errors decrease linearly when (1) the splitting procedure is of first order and (2) the splitting errors are dominant. Three examples for splitting procedures used in all large-scale air pollution models are presented. Numerical results obtained by a particular air pollution model, Unified Danish Eulerian Model (UNI-DEM), are given and analysed.
Resumo:
The collection efficiency of two widely used gunshot residue (GSR) collection techniques—carbon-coated adhesive stubs and alcohol swabs—has been compared by counting the number of characteristic GSR particles collected from the firing hand of a shooter after firing one round. Samples were analyzed with both scanning electron microscopy and energy dispersive X-rays by an experienced GSR analyst, and the number of particles on each sample containing Pb, Ba, and Sb counted. The adhesive stubs showed a greater collection efficiency as all 24 samples gave positive results for GSR particles whereas the swabs gave only positive results for half of the 24 samples. Results showed a statistically significant collection efficiency for the stub collection method and likely reasons for this are considered.
Resumo:
This study assesses the current state of adult skeletal age-at-death estimation in biological anthropology through analysis of data published in recent research articles from three major anthropological and archaeological journals (2004–2009). The most commonly used adult ageing methods, age of ‘adulthood’, age ranges and the maximum age reported for ‘mature’ adults were compared. The results showed a wide range of variability in the age at which individuals were determined to be adult (from 14 to 25 years), uneven age ranges, a lack of standardisation in the use of descriptive age categories and the inappropriate application of some ageing methods for the sample being examined. Such discrepancies make comparisons between skeletal samples difficult, while the inappropriate use of some techniques make the resultant age estimations unreliable. At a time when national and even global comparisons of past health are becoming prominent, standardisation in the terminology and age categories used to define adults within each sample is fundamental. It is hoped that this research will prompt discussions in the osteological community (both nationally and internationally) about what defines an ‘adult’, how to standardise the age ranges that we use and how individuals should be assigned to each age category. Skeletal markers have been proposed to help physically identify ‘adult’ individuals.
Resumo:
The kinetics of the reactions of the atoms O(P-3), S(P-3), Se(P-3), and Te((3)p) with a series of alkenes are examined for correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes. These correlations may be employed to predict rate coefficients from the calculated HOMO energy of any other alkene of interest. The rate coefficients obtained from the correlations were used to formulate structure-activity relations (SARs) for reactions of O((3)p), S(P-3), Se (P-3), and Te((3)p) with alkenes. A comparison of the values predicted by both the correlations and the SARs with experimental data where they exist allowed us to assess the reliability of our method. We demonstrate the applicability of perturbation frontier molecular orbital theory to gas-phase reactions of these atoms with alkenes. The correlations are apparently not applicable to reactions of C(P-3), Si(P-3), N(S-4), and Al(P-2) atoms with alkenes, a conclusion that could be explained in terms of a different mechanism for reaction of these atoms.
Resumo:
Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subspace needs to be replaced by the concept of an invariant pair. Little has been known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures.
Resumo:
In the last few years a state-space formulation has been introduced into self-tuning control. This has not only allowed for a wider choice of possible control actions, but has also provided an insight into the theory underlying—and hidden by—that used in the polynomial description. This paper considers many of the self-tuning algorithms, both state-space and polynomial, presently in use, and by starting from first principles develops the observers which are, effectively, used in each case. At any specific time instant the state estimator can be regarded as taking one of two forms. In the first case the most recently available output measurement is excluded, and here an optimal and conditionally stable observer is obtained. In the second case the present output signal is included, and here it is shown that although the observer is once again conditionally stable, it is no longer optimal. This result is of significance, as many of the popular self-tuning controllers lie in the second, rather than first, category.