999 resultados para peritumoral brain zone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented evaluates the statistical characteristics of regional bias and expected error in reconstructions of real positron emission tomography (PET) data of human brain fluoro-deoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task of evaluating radioisotope uptake in regions-of-interest (ROIs) is investigated. An assessment of bias and variance in uptake measurements is carried out with simulated data. Then, by using three different transition matrices with different degrees of accuracy and a components of variance model for statistical analysis, it is shown that the characteristics obtained from real human FDG brain data are consistent with the results of the simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Low brain tissue oxygen pressure (PbtO2) is associated with worse outcome in patients with severe traumatic brain injury (TBI). However, it is unclear whether brain tissue hypoxia is merely a marker of injury severity or a predictor of prognosis, independent from intracranial pressure (ICP) and injury severity. Hypothesis: We hypothesized that brain tissue hypoxia was an independent predictor of outcome in patients wih severe TBI, irrespective of elevated ICP and of the severity of cerebral and systemic injury. Methods: This observational study was conducted at the Neurological ICU, Hospital of the University of Pennsylvania, an academic level I trauma center. Patients admitted with severe TBI who had PbtO2 and ICP monitoring were included in the study. PbtO2, ICP, mean arterial pressure (MAP) and cerebral perfusion pressure (CPP = MAP-ICP) were monitored continuously and recorded prospectively every 30 min. Using linear interpolation, duration and cumulative dose (area under the curve, AUC) of brain tissue hypoxia (PbtO2 < 15 mm Hg), elevated ICP >20 mm Hg and low CPP <60 mm Hg were calculated, and the association with outcome at hospital discharge, dichotomized as good (Glasgow Outcome Score [GOS] 4-5) vs. poor (GOS 1-3), was analyzed. Results: A total of 103 consecutive patients, monitored for an average of 5 days, was studied. Brain tissue hypoxia was observed in 66 (64%) patients despite ICP was < 20 mm Hg and CPP > 60 mm Hg (72 +/- 39% and 49 +/- 41% of brain hypoxic time, respectively). Compared with patients with good outcome, those with poor outcome had a longer duration of brain hypoxia (1.7 +/- 3.7 vs. 8.3 +/- 15.9 hrs, P<0.01), as well as a longer duration (11.5 +/- 16.5 vs. 21.6 +/- 29.6 hrs, P=0.03) and a greater cumulative dose (56 +/- 93 vs. 143 +/- 218 mm Hg*hrs, P<0.01) of elevated ICP. By multivariable logistic regression, admission Glasgow Coma Scale (OR, 0.83, 95% CI: 0.70-0.99, P=0.04), Marshall CT score (OR 2.42, 95% CI: 1.42-4.11, P<0.01), APACHE II (OR 1.20, 95% CI: 1.03-1.43, P=0.03), and the duration of brain tissue hypoxia (OR 1.13; 95% CI: 1.01-1.27; P=0.04) were all significantly associated with poor outcome. No independent association was found between the AUC for elevated ICP and outcome (OR 1.01, 95% CI 0.97-1.02, P=0.11) in our prospective cohort. Conclusions: In patients with severe TBI, brain tissue hypoxia is frequent, despite normal ICP and CPP, and is associated with poor outcome, independent of intracranial hypertension and the severity of cerebral and systemic injury. Our findings indicate that PbtO2 is a strong physiologic prognostic marker after TBI. Further study is warranted to examine whether PbtO2-directed therapy improves outcome in severely head-injured patients .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to "NoGo" stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, whether inhibitory functions in humans can be trained and the supporting neurophysiological mechanisms remain unresolved. We addressed these issues by contrasting auditory evoked potentials (AEPs) to left-lateralized "Go" and right NoGo stimuli recorded at the beginning versus the end of 30 min of active auditory spatial Go/NoGo training, as well as during passive listening of the same stimuli before versus after the training session, generating two separate 2 × 2 within-subject designs. Training improved Go/NoGo proficiency. Response times to Go stimuli decreased. During active training, AEPs to NoGo, but not Go, stimuli modulated topographically with training 61-104 ms after stimulus onset, indicative of changes in the underlying brain network. Source estimations revealed that this modulation followed from decreased activity within left parietal cortices, which in turn predicted the extent of behavioral improvement. During passive listening, in contrast, effects were limited to topographic modulations of AEPs in response to Go stimuli over the 31-81 ms interval, mediated by decreased right anterior temporoparietal activity. We discuss our results in terms of the development of an automatic and bottom-up form of inhibitory control with training and a differential effect of Go/NoGo training during active executive control versus passive listening conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Barbiturate-induced coma can be used in patients to treat intractable intracranial hypertension when other therapies, such as osmotic therapy and sedation, have failed. Despite control of intracranial pressure, cerebral infarction may still occur in some patients, and the effect of barbiturates on outcome remains uncertain. In this study, we examined the relationship between barbiturate infusion and brain tissue oxygen (PbtO2). METHODS: Ten volume-resuscitated brain-injured patients who were treated with pentobarbital infusion for intracranial hypertension and underwent PbtO2 monitoring were studied in a neurosurgical intensive care unit at a university-based Level I trauma center. PbtO2, intracranial pressure (ICP), mean arterial pressure, cerebral perfusion pressure (CPP), and brain temperature were continuously monitored and compared in settings in which barbiturates were or were not administered. RESULTS: Data were available from 1595 hours of PbtO2 monitoring. When pentobarbital administration began, the mean ICP, CPP, and PbtO2 were 18 +/- 10, 72 +/- 18, and 28 +/- 12 mm Hg, respectively. During the 3 hours before barbiturate infusion, the maximum ICP was 24 +/- 13 mm Hg and the minimum CPP was 65 +/- 20 mm Hg. In the majority of patients (70%), we observed an increase in PbtO2 associated with pentobarbital infusion. Within this group, logistic regression analysis demonstrated that a higher likelihood of compromised brain oxygen (PbtO2 < 20 mm Hg) was associated with a decrease in pentobarbital dose after controlling for ICP and other physiological parameters (P < 0.001). In the remaining 3 patients, pentobarbital was associated with lower PbtO2 levels. These patients had higher ICP, lower CPP, and later initiation of barbiturates compared with patients whose PbtO2 increased. CONCLUSION: Our preliminary findings suggest that pentobarbital administered for intractable intracranial hypertension is associated with a significant and independent increase in PbtO2 in the majority of patients. However, in some patients with more compromised brain physiology, pentobarbital may have a negative effect on PbtO2, particularly if administered late. Larger studies are needed to examine the relationship between barbiturates and cerebral oxygenation in brain-injured patients with refractory intracranial hypertension and to determine whether PbtO2 responses can help guide therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inositol and its phosphorylated derivatives play a major role in brain function, either as osmolytes, second messengers or regulators of vesicle endo- and exocytosis. Here we describe the identification and functional characterization of a novel H(+)-myo- inositol co-transporter, HMIT, expressed predominantly in the brain. HMIT cDNA encodes a 618 amino acid polypeptide with 12 predicted transmembrane domains. Functional expression of HMIT in Xenopus oocytes showed that transport activity was specific for myo-inositol and related stereoisomers with a Michaelis-Menten constant of approximately 100 microM, and that transport activity was strongly stimulated by decreasing pH. Electrophysiological measurements revealed that transport was electrogenic with a maximal transport activity reached at pH 5.0. In rat brain membrane preparations, HMIT appeared as a 75-90 kDa protein that could be converted to a 67 kDa band upon enzymatic deglycosylation. Immunofluorescence microscopy analysis showed HMIT expression in glial cells and some neurons. These data provide the first characterization of a mammalian H(+)-coupled myo- inositol transporter. Predominant central expression of HMIT suggests that it has a key role in the control of myo-inositol brain metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full signal intensity (1)H-[(13)C] NMR spectroscopy, combining a preceding (13)C-editing block based on an inversion BISEP (B(1)-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. (13)C editing of the proposed scheme was achieved by turning on and off the (13)C adiabatic full passage in the (13)C-editing block to prepare inverted and noninverted (13)C-coupled (1)H coherences along the longitudinal axis prior to localization. The novel (1)H-[(13)C] NMR approach was applied in vivo under infusion of the glia-specific substrate [2-(13)C] acetate. Besides a approximately 50% improvement in sensitivity, spectral dispersion was enhanced at 14.1 T, especially for J-coupled metabolites such as glutamate and glutamine. A more distinct spectral structure at 1.9-2.2 ppm(parts per million) was observed, e.g., glutamate C3 showed a doublet pattern in both simulated (1)H spectrum and in vivo (13)C-edited (1)H NMR spectra. Besides (13)C time courses of glutamate C4 and glutamine C4, the time courses of glutamate C3 and glutamine C3 obtained by (1)H-[(13)C] NMR spectroscopy were reported for the first time. Such capability should greatly improve the ability to study neuron-glial metabolism using (1)H-observed (13)C-edited NMR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While it was thought that most of cerebral creatine is of peripheral origin, AGAT and GAMT are well expressed in CNS where brain cells synthesize creatine. While the creatine transporter SLC6A8 is expressed by microcapillary endothelial cells (MCEC) at blood-brain barrier (BBB), it is absent from their surrounding astrocytes. This raised the concept that BBB has a limited permeability for peripheral creatine, and that the brain supplies a part of its creatine by endogenous synthesis. This review brings together the latest data on creatine and guanidinoacetate transport through BBB and blood-CSF barrier (BCSFB) with the clinical evidence of AGAT-, GAMT- and SLC6A8-deficient patients, in order to delineate a clearer view on the roles of BBB and BCSFB in the transport of creatine and guanidinoacetate between periphery and CNS, and on brain synthesis and transport of creatine. It shows that in physiological conditions, creatine is taken up by CNS from periphery through SLC6A8 at BBB, but in limited amounts, and that CNS also needs its own creatine synthesis. No uptake of guanidinoacetate from periphery occurs at BBB except under GAMT deficiency, but a net exit of guanidinoacetate seems to occur from CSF to blood at BCSFB, predominantly through the taurine transporter TauT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) is a protein capable of supporting the survival and fiber outgrowth of peripheral sensory neurons. It has been argued that histological detection of BDNF has proven difficult because of its low molecular weight and relatively low expression. In the present study we report that rapid removal of dorsal root ganglia (DRG) from the rat, followed by rapid freezing and appropriate fixation with cold acetone, preserves BDNF in situ without altering protein antigenicity. Under these conditions, specific BDNF-like immunoreactivity was detected in DRG both in vivo and in vitro. During DRG development in vivo, BDNF-like immunoreactivity (BDNF-LI) was observed only in a subset of sensory neurons. BDNF-LI was confined to small neurons, after neurons became morphologically distinct on the basis of size. BDNF-L immunoprecipitate was detected only in neuronal cells, and not in satellite or Schwann cells. While in vivo BDNF localization was restricted to small neurons, practically all neurons in DRG cell culture displayed BDNF-LI. Small or large primary afferent neurons exhibited a faint but clear BDNF-LI during the whole life span of cultures. Again, non-neuronal cells were devoid of BDNF-LI. In conclusion, in DRG in vivo, specific BDNF-LI was confined to small B sensory neurons. In contrast, all DRG sensory neurons displayed BDNF-LI in vitro. The finding that BDNF expressed in all DRG neurons in vitro but not in vivo suggests that BDNF expression may be modulated by environmental factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a method for the image analysisof Magnetic Resonance Imaging (MRI) of fetuses. Our goalis to segment the brain surface from multiple volumes(axial, coronal and sagittal acquisitions) of a fetus. Tothis end we propose a two-step approach: first, a FiniteGaussian Mixture Model (FGMM) will segment the image into3 classes: brain, non-brain and mixture voxels. Second, aMarkov Random Field scheme will be applied tore-distribute mixture voxels into either brain ornon-brain tissue. Our main contributions are an adaptedenergy computation and an extended neighborhood frommultiple volumes in the MRF step. Preliminary results onfour fetuses of different gestational ages will be shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

subsequent extension-induced exhumation. Geochronological dating of various Structural, thermobarometric, and geochronological data place limits on the age and tectonic displacement along the Zanskar shear zone, a major north-dipping synorogenic extensional structure separating the high-grade metamorphic sequence of the High Himalayan Crystalline Sequence from the overlying low-grade sedimentary rocks of the Tethyan Himalaya, A complete Barrovian metamorphic succession, from kyanite to biotite zone mineral assemblages, occurs within the I-km-thick Zanskar shear zone. Thermobarometric data indicate a difference In equilibration depths of 12 +/- 3 km between the lower kyanite zone and the garnet zone, which is Interpreted as a minimum estimate for the finite vertical displacement accommodated by the Zanskar shear zone. For the present-day dip of the structure (20 degrees), a simple geometrical model shows that a net slip of 35 +/- 9 km is required to regroup these samples to the same structural level. Because the kyanite to garnet zone rocks represent only part of the Zanskar shear zone, and because its original dip may have been less than the present-day dip, these estimates fur the finite displacement represent minimum values. Field relations and petrographic data suggest that migmatization and associated leucogranite intrusion in the footwall of the Zanskar shear zone occurred as a continuous profess starting at the Barrovian metamorphic peak and lasting throughout the subsequent extension-induced exhumation. Geochronological dataing of various leucogranitic plutons and dikes in the Zanskar shear zone footwall indicates that the main ductile shearing along the structure ended by 19.8 Ma and that extension most likely initiated shortly before 22.2 Ma.