783 resultados para performance implications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Walking is commonly recommended to help with weight management. We measured total energy expenditure (TEE) and its components to quantify the impact of increasing exercise-induced energy expenditure (ExEE) on other components of TEE. Methods: Thirteen obese women underwent an 8-week walking group intervention. TEE was quantified using doubly labeled water, ExEE was quantified using heart rate monitors, daily movement was assessed by accelerometry and resting metabolic rate was measured using indirect calorimetry. Results: Four of the 13 participants achieved the target of 1500 kcal wk−1 of ExEE and all achieved 1000 kcal wk−1. The average ExEE achieved by the group across the 8 weeks was 1434 ± 237 kcal wk−1. Vigorous physical activity, as assessed by accelerometry, increased during the intervention by an average of 30 min per day. Non-exercise activity thermogenesis (NEAT) decreased, on average, by 175 kcal d−1 (−22%) from baseline to the intervention and baseline fitness was correlated with change in NEAT. Conclusions: Potential alterations in non-exercise activity should be considered when exercise is prescribed. The provision of appropriate education on how to self-monitor daily activity levels may improve intervention outcomes in groups who are new to exercise. Practice implications: Strategies to sustain incidental and light physical activity should be offered to help empower individuals as they develop and maintain healthy and long-lasting lifestyle habits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leading scholars on nonprofit governance have urged that future research be more informed by theory in order to promote more rigorous analysis. The aim of this paper is to survey the major theories on board governance, including those based in the disciplines of economics, management, sociology, psychology, politics, history and theology, in order to respond to this challenge. In addition, the relevance of these theories to a critical set of board behaviors - that is, how boards monitor, judge and influence organizational performance - is examined. Gaps in the theoretical literature are identified, and implications for public policy are explored. We conclude that a multi-theory and multi-disciplinary perspective is needed if research on governance of nonprofit organizations is to be complete in scope, rich in content, and relevant.