926 resultados para peak to side lobe ratio
Resumo:
Precise relative sea level (RSL) data are important for inferring regional ice sheet histories, as well as helping to validate numerical models of ice sheet evolution and glacial isostatic adjustment. Here we develop a new RSL curve for Fildes Peninsula, South Shetland Islands (SSIs), a sub-Antarctic archipelago peripheral to the northern Antarctic Peninsula ice sheet, by integrating sedimentary evidence from isolation basins with geomorphological evidence from raised beaches. This combined approach yields not only a Holocene RSL curve, but also the spatial pattern of how RSL change varied across the archipelago. The curve shows a mid-Holocene RSL highstand on Fildes Peninsula at 15.5 m above mean sea level between 8000 and 7000 cal a BP. Subsequently RSL gradually fell as a consequence of isostatic uplift in response to regional deglaciation. We propose that isostatic uplift occurred at a non-steady rate, with a temporary pause in ice retreat ca. 7200 cal a BP, leading to a short-lived RSL rise of ~1 m and forming a second peak to the mid-Holocene highstand. Two independent approaches were taken to constrain the long-term tectonic uplift rate of the SSIs at 0.22-0.48 m/ka, placing the tectonic contribution to the reconstructed RSL highstand between 1.4 and 2.9 m. Finally, we make comparisons to predictions from three global sea level models.
Resumo:
During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z = 0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z = 5.2429. This source is unusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (∼200 mJy at 500 μm) and its high redshift. The dominant lens is a foreground z = 0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of L_FIR = 1.1 × 10^14/μ L_⨀, where μ is the magnification factor, likely ∼11. We report here the redshift identification through CO lines with the IRAM-30 m, and the analysis of the gas excitation, based on CO(7–6), CO(6–5), CO(5–4) detected at IRAM and the CO(2–1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540 km s^−1 apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H_2 conversion ratio, the H_2 mass is 5.8×10^11/μ M_⨀, of which one third is in a cool component. From the CI(^3P_2−^3 P_1) line we derive a C_I/H_2 number abundance of 6 × 10^−5 similar to that in other ULIRGs. The H_2O_p(2, 0, 2−1, 1, 1) line is strong only in the red velocity component, with an intensity ratio I(H_2O)/I(CO) ∼ 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205 μm line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.
Resumo:
The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.
The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.
ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.
Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.
Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.
Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.
Resumo:
Magnetic field inhomogeneity results in image artifacts including signal loss, image blurring and distortions, leading to decreased diagnostic accuracy. Conventional multi-coil (MC) shimming method employs both RF coils and shimming coils, whose mutual interference induces a tradeoff between RF signal-to-noise (SNR) ratio and shimming performance. To address this issue, RF coils were integrated with direct-current (DC) shim coils to shim field inhomogeneity while concurrently emitting and receiving RF signal without being blocked by the shim coils. The currents applied to the new coils, termed iPRES (integrated parallel reception, excitation and shimming), were optimized in the numerical simulation to improve the shimming performance. The objectives of this work is to offer a guideline for designing the optimal iPRES coil arrays to shim the abdomen.
In this thesis work, the main field () inhomogeneity was evaluated by root mean square error (RMSE). To investigate the shimming abilities of iPRES coil arrays, a set of the human abdomen MRI data was collected for the numerical simulations. Thereafter, different simplified iPRES(N) coil arrays were numerically modeled, including a 1-channel iPRES coil and 8-channel iPRES coil arrays. For 8-channel iPRES coil arrays, each RF coil was split into smaller DC loops in the x, y and z direction to provide extra shimming freedom. Additionally, the number of DC loops in a RF coil was increased from 1 to 5 to find the optimal divisions in z direction. Furthermore, switches were numerically implemented into iPRES coils to reduce the number of power supplies while still providing similar shimming performance with equivalent iPRES coil arrays.
The optimizations demonstrate that the shimming ability of an iPRES coil array increases with number of DC loops per RF coil. Furthermore, the z direction divisions tend to be more effective in reducing field inhomogeneity than the x and y divisions. Moreover, the shimming performance of an iPRES coil array gradually reach to a saturation level when the number of DC loops per RF coil is large enough. Finally, when switches were numerically implemented in the iPRES(4) coil array, the number of power supplies can be reduced from 32 to 8 while keeping the shimming performance similar to iPRES(3) and better than iPRES(1). This thesis work offers a guidance for the designs of iPRES coil arrays.
Resumo:
This data contains realized ecological niche estimates of phytoplankton taxa within the mixed layer of the open ocean. The estimates are based on data from the MARine Ecosystem DATa (MAREDAT) initiative, and cover five phytoplankton functional types: coccolithophores (40 species), diatoms (87 species), diazotrophs (two genera), Phaeocystis (two species) and picophytoplankton (two genera). Considered as major niche dimensions were temperature (°C), mixed layer depth (MLD; m), nitrate concentration (µmoles/L), mean photosynthetically active radiation in the mixed layer (MLPAR; µmoles/m**2/s), salinity, and the excess of phosphate versus nitrate relative to the Redfield ratio (P*; µmoles/L). For each niche dimension at a time, conditions at presence locations of the taxa were contrasted with conditions in 12 000 randomly sampled points from the open ocean using MaxEnt models. We used the quartiles of the response curves of these models to parameterize realized niche centers and niche breadths: the median (q50) of the response curves was considered to be the niche center and the distance between the lower quartile (q25) and the upper quartile (q75) was used as a rough estimate of niche breadth. We only reported meaningful niche estimates, i.e., estimates based on MaxEnt models that perform significantly better than random, as indicated by an area under the curve (AUC) score significantly larger than 0.5.
Resumo:
Lower jaws (containing the teeth), eyes, and skin samples were collected from harp seals (Pagophilus groenlandicus) in the southeastern Barents Sea for the purpose of comparing age estimates obtained by 3 different methods, the traditional technique of counting growth layer groups (GLGs) in teeth and 2 novel approaches, aspartic acid racemization (AAR) in eye lens nuclei and telomere sequence analyses as a proxy for telomere length. A significant correlation between age estimates obtained using GLGs and AAR was found, whereas no correlation was found between GLGs and telomere length. An AAR rate (k Asp) of 0.00130/year ± 0.00005 SE and a D-enantiomer to L-enantiomer ratio at birth (D/L 0 value) of 0.01933 ± 0.00048 SE were estimated by regression of D/L ratios against GLG ages from 25 animals (12 selected teeth that had high readability and 13 known-aged animals). AAR could prove to be useful, particularly for ageing older animals in species such as harp seals where difficulties in counting GLGs tend to increase with age. Age estimation by telomere length did not show any correlation with GLG ages and is not recommended for harp seals.
Resumo:
Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
Resumo:
La maladie de Parkinson (MP) est une maladie neurodégénérative qui se caractérise principalement par la présence de symptômes moteurs. Cependant, d’autres symptômes, dits non moteurs, sont fréquents dans la MP et assombrissent le pronostic; ceux ci incluent notamment les désordres du sommeil et les troubles cognitifs. De fait, sur une période de plus de 10 ans, jusqu’à 90 % des patients avec la MP développeraient une démence. L’identification de marqueurs de la démence dans la MP est donc primordiale pour permettre le diagnostic précoce et favoriser le développement d’approches thérapeutiques préventives. Plusieurs études ont mis en évidence la contribution du sommeil dans les processus de plasticité cérébrale, d’apprentissage et de consolidation mnésique, notamment l’importance des ondes lentes (OL) et des fuseaux de sommeil (FS). Très peu de travaux se sont intéressés aux liens entre les modifications de la microarchitecture du sommeil et le déclin cognitif dans la MP. L’objectif de cette thèse est de déterminer, sur le plan longitudinal, si certains marqueurs électroencéphalographiques (EEG) en sommeil peuvent prédire la progression vers la démence chez des patients atteints de la MP. La première étude a évalué les caractéristiques des OL et des FS durant le sommeil lent chez les patients avec la MP selon qu’ils ont développé ou non une démence (MP démence vs MP sans démence) lors du suivi longitudinal, ainsi que chez des sujets contrôles en santé. Comparativement aux patients MP sans démence et aux sujets contrôles, les patients MP démence présentaient au temps de base une diminution de la densité, de l’amplitude et de la fréquence des FS. La diminution de l’amplitude des FS dans les régions postérieures était associée à de moins bonnes performances aux tâches visuospatiales chez les patients MP démence. Bien que l’amplitude des OL soit diminuée chez les deux groupes de patients avec la MP, celle ci n’était pas associée au statut cognitif lors du suivi. La deuxième étude a évalué les marqueurs spectraux du développement de la démence dans la MP à l’aide de l’analyse quantifiée de l’EEG en sommeil lent, en sommeil paradoxal et à l’éveil. Les patients MP démence présentaient une diminution de la puissance spectrale sigma durant le sommeil lent dans les régions pariétales comparativement aux patients MP sans démence et aux contrôles. Durant le sommeil paradoxal, l’augmentation de la puissance spectrale en delta et en thêta, de même qu’un plus grand ratio de ralentissement de l’EEG, caractérisé par un rapport plus élevé des basses fréquences sur les hautes fréquences, était associée au développement de la démence chez les patients avec la MP. D’ailleurs, dans la cohorte de patients, un plus grand ralentissement de l’EEG en sommeil paradoxal dans les régions temporo occipitales était associé à des performances cognitives moindres aux épreuves visuospatiales. Enfin, durant l’éveil, les patients MP démence présentaient au temps de base une augmentation de la puissance spectrale delta, un plus grand ratio de ralentissement de l’EEG ainsi qu’une diminution de la fréquence dominante occipitale alpha comparativement aux patients MP sans démence et aux contrôles. Cette thèse suggère que des anomalies EEG spécifiques durant le sommeil et l’éveil peuvent identifier les patients avec la MP qui vont développer une démence quelques années plus tard. L’activité des FS, ainsi que le ralentissement de l’EEG en sommeil paradoxal et à l’éveil, pourraient donc servir de marqueurs potentiels du développement de la démence dans la MP.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Contexte : Les effets cumulés des contraintes psychosociales du modèle déséquilibre efforts-reconnaissance (DER) sur la santé mentale sont peu connus. Aussi, peu d’études ont évalué les effets du DER sur des indicateurs objectifs de problèmes de santé mentale (PSM). Enfin, aucune étude prospective antérieure n’a évalué l’effet combiné des contraintes psychosociales du DER et du modèle demande-latitude (DL) et sur les PSM médicalement certifiés. La présente thèse vise à combler ces limites. Objectifs : 1) Mesurer l’effet de l’exposition cumulée au déséquilibre efforts-reconnaissance sur la prévalence de la détresse psychologique sur une période de cinq ans; 2) Mesurer l’effet du déséquilibre efforts-reconnaissance sur l’incidence des absences médicalement certifiées pour PSM sur une période de cinq ans; 3) Évaluer l’effet indépendant et l’effet combiné des contraintes psychosociales des modèles Demande-Latitude et Déséquilibre Efforts-Reconnaissance sur l’incidence des absences médicalement certifiées pour PSM sur une période de cinq ans. Méthodes : La cohorte était constituée de plus de 2000 hommes et femmes occupant des emplois de cols blancs. La collecte des données a été réalisée à trois reprises avec une moyenne de suivi de cinq ans. À chaque temps, les contraintes psychosociales et la détresse psychologique ont été mesurées à l’aide d’instruments validés. Les absences médicalement certifiées pour PSM ont été récoltées à partir des fichiers administratifs des employeurs. Les PSM ont été modélisés à l’aide des régressions log-binomiale et de Cox. Les analyses ont été réalisées séparément chez les hommes et les femmes, en ajustant pour les principaux facteurs de confusion. Résultats : Chez les hommes et les femmes, une exposition chronique au DER sur trois ans était associée à une prévalence plus élevée de la détresse psychologique. Les effets observés à trois ans ont persisté à cinq ans chez les hommes (Rapport de prévalence (RP)=1,91 (1,20–3,04)) et les femmes (RP=2,48 (1,97–3,11)). Ces effets étaient de plus grande amplitude que ceux observés en utilisant l’exposition initiale à l’entrée dans l’étude (de +0,30 à +0,94). Par ailleurs, les hommes et les femmes exposés au DER présentaient un risque plus élevé d’absences médicalement certifiées pour PSM (Risque relatif (RR)=1,38 (1,08–1,76)), comparés aux travailleurs non-exposés. La faible reconnaissance au travail était associée à un risque important d’absences pour PSM chez les hommes (RR=3,04 (1,46–6,33)) mais pas chez les femmes (RR=1,24 (0,90–1,72)). Chez les femmes uniquement, un effet indépendant du « job strain » (RR=1,50 (1,12–2,07)) et du DER (RR=1,34 (0,98–1,84)), ainsi qu’un effet de l’exposition combinée au « job strain » (demande psychologique élevée et faible latitude décisionnelle) et au DER (RR=1,97 (1,40–2,78)) sur le risque d’absences médicalement certifiées pour PSM ont également été observés. Conclusion : Les résultats de cette thèse supportent l’effet délétère de l’exposition au DER sur la prévalence de la détresse psychologique et sur le risque d’absences médicalement certifiées pour PSM chez les hommes et les femmes. Chez les hommes et les femmes, l’exposition cumulée au DER était associée à une prévalence élevée de la détresse psychologique à trois ans et à cinq ans. De plus, les contraintes psychosociales du DER ont été associées aux absences médicalement certifiés pour PSM. Chez les femmes particulièrement, un effet combiné du « job strain » et du DER était associé à un risque plus élevé d’absences médicalement certifiées pour PSM, que l’exposition à un seul des deux facteurs. Ces résultats suggèrent que la réduction des contraintes psychosociales au travail pourrait contribuer à réduire l’incidence des PSM, incluant les absences médicalement certifiées pour PSM.
Resumo:
Introduction. Acute intestinal obstruction in pregnancy is a rare, but life-threatening complication associated with high fetal and maternal mortality. Case report. A 20-year old gravida presented with a 24 hour history of several episodes of vomiting, complete constipation and severe crampy abdominal pain. The patient was admitted with the diagnosis of acute abdomen associated with septic shock. On examination echography showed distended intestinal loops and presence of free peritoneal fluid. Abdominal X-ray with shielding of the fetus revealed colonic air-fluid levels. The obstetrician consult diagnosed dead fetus in utero and was decided to operate immediately. On laparotomy was found complete cecal volvulus with gangrene of cecum, part of ascending colon and terminal ileum. A right hemicolectomy was performed with side to side ileotransverse anastomosis. Afterwards a lower segment cesarean section was made and a stillborn fetus was delivered. The patient made an uneventful recovery and was discharged on 9th postoperative day. Conclusion. Cecal volvulus during pregnancy is a rare, but serious surgical problem. Correct diagnosis may be difficult until exploratory laparotomy is performed. Undue delay in diagnosis and surgical treatment can increase the maternal and fetal mortality.
Resumo:
Universities are institutions that generate and manipulate large amounts of data as a result of the multiple functions they perform, of the amount of involved professionals and students they attend. Information gathered from these data is used, for example, for operational activities and to support decision-making by managers. To assist managers in accomplishing their tasks, the Information Systems (IS) are presented as tools that offer features aiming to improve the performance of its users, assist with routine tasks and provide support to decision-making. The purpose of this research is to evaluate the influence of the users features and of the task in the success of IS. The study is of a descriptive-exploratory nature, therefore, the constructs used to define the conceptual model of the research are known and previously validated. However, individual features of users and of the task are IS success antecedents. In order to test the influence of these antecedents, it was developed a decision support IS that uses the Multicriteria Decision Aid Constructivist (MCDA-C) methodology with the participation and involvement of users. The sample consisted of managers and former managers of UTFPR Campus Pato Branco who work or have worked in teaching activities, research, extension and management. For data collection an experiment was conducted in the computer lab of the Campus Pato Branco in order to verify the hypotheses of the research. The experiment consisted of performing a distribution task of teaching positions between the academic departments using the IS developed. The task involved decision-making related to management activities. The data that fed the system used were real, from the Campus itself. A questionnaire was answered by the participants of the experiment in order to obtain data to verify the research hypotheses. The results obtained from the data analysis partially confirmed the influence of the individual features in IS success and fully confirmed the influence of task features. The data collected failed to support significant ratio between the individual features and the individual impact. For many of the participants the first contact with the IS was during the experiment, which indicates the lack of experience with the system. Regarding the success of IS, the data revealed that there is no significance in the relationship between Information Quality (IQ) and Individual Impact (II). It is noteworthy that the IS used in the experiment is to support decision-making and the information provided by this system are strictly quantitative, which may have caused some conflict in the analysis of the criteria involved in the decision-making process. This is because the criteria of teaching, research, extension and management are interconnected such that one reflects on another. Thus, the opinion of the managers does not depend exclusively on quantitative data, but also of knowledge and value judgment that each manager has about the problem to be solved.
Resumo:
In this paper, we use an observational dataset built from Argo in situ profiles to describe the main large-scale patterns of intraseasonal mixed layer depth (MLD) variations in the Indian Ocean. An eddy permitting (0.25A degrees) regional ocean model that generally agrees well with those observed estimates is then used to investigate the mechanisms that drive MLD intraseasonal variations and to assess their potential impact on the related SST response. During summer, intraseasonal MLD variations in the Bay of Bengal and eastern equatorial Indian Ocean primarily respond to active/break convective phases of the summer monsoon. In the southern Arabian Sea, summer MLD variations are largely driven by seemingly-independent intraseasonal fluctuations of the Findlater jet intensity. During winter, the Madden-Julian Oscillation drives most of the intraseasonal MLD variability in the eastern equatorial Indian Ocean. Large winter MLD signals in northern Arabian Sea can, on the other hand, be related to advection of continental temperature anomalies from the northern end of the basin. In all the aforementioned regions, peak-to-peak MLD variations usually reach 10 m, but can exceed 20 m for the largest events. Buoyancy flux and wind stirring contribute to intraseasonal MLD fluctuations in roughly equal proportions, except for the Northern Arabian Sea in winter, where buoyancy fluxes dominate. A simple slab ocean analysis finally suggests that the impact of these MLD fluctuations on intraseasonal sea surface temperature variability is probably rather weak, because of the compensating effects of thermal capacity and sunlight penetration: a thin mixed-layer is more efficiently warmed at the surface by heat fluxes but loses more solar flux through its lower base.