939 resultados para parameter driven model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the atmospheric variability in the North Atlantic sector is associated with variations in the eddy-driven component of the zonal flow. Here we present a simple method to specifically diagnose this component of the flow using the low-level wind field (925–700 hpa ). We focus on the North Atlantic winter season in the ERA-40 reanalysis. Diagnostics of the latitude and speed of the eddy-driven jet stream are compared with conventional diagnostics of the North Atlantic Oscillation (NAO) and the East Atlantic (EA) pattern. This shows that the NAO and the EA both describe combined changes in the latitude and speed of the jet stream. It is therefore necessary, but not always sufficient, to consider both the NAO and the EA in identifying changes in the jet stream. The jet stream analysis suggests that there are three preferred latitudinal positions of the North Atlantic eddy-driven jet stream in winter. This result is in very good agreement with the application of a statistical mixture model to the two-dimensional state space defined by the NAO and the EA. These results are consistent with several other studies which identify four European/Atlantic regimes, comprising three jet stream patterns plus European blocking events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller-Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survival times for the Acacia mangium plantation in the Segaliud Lokan Project, Sabah, East Malaysia were analysed based on 20 permanent sample plots (PSPs) established in 1988 as a spacing experiment. The PSPs were established following a complete randomized block design with five levels of spacing randomly assigned to units within four blocks at different sites. The survival times of trees in years are of interest. Since the inventories were only conducted annually, the actual survival time for each tree was not observed. Hence, the data set comprises censored survival times. Initial analysis of the survival of the Acacia mangium plantation suggested there is block by spacing interaction; a Weibull model gives a reasonable fit to the replicate survival times within each PSP; but a standard Weibull regression model is inappropriate because the shape parameter differs between PSPs. In this paper we investigate the form of the non-constant Weibull shape parameter. Parsimonious models for the Weibull survival times have been derived using maximum likelihood methods. The factor selection for the parameters is based on a backward elimination procedure. The models are compared using likelihood ratio statistics. The results suggest that both Weibull parameters depend on spacing and block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we list some new orthogonal main effects plans for three-level designs for 4, 5 and 6 factors in IS runs and compare them with designs obtained from the existing L-18 orthogonal array. We show that these new designs have better projection properties and can provide better parameter estimates for a range of possible models. Additionally, we study designs in other smaller run-sizes when there are insufficient resources to perform an 18-run experiment. Plans for three-level designs for 4, 5 and 6 factors in 13 to 17 runs axe given. We show that the best designs here are efficient and deserve strong consideration in many practical situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper highlights the key role played by solubility in influencing gelation and demonstrates that many facets of the gelation process depend on this vital parameter. In particular, we relate thermal stability (T-gel) and minimum gelation concentration (MGC) values of small-molecule gelation in terms of the solubility and cooperative self-assembly of gelator building blocks. By employing a van't Hoff analysis of solubility data, determined from simple NMR measurements, we are able to generate T-calc values that reflect the calculated temperature for complete solubilization of the networked gelator. The concentration dependence of T-calc allows the previously difficult to rationalize "plateau-region" thermal stability values to be elucidated in terms of gelator molecular design. This is demonstrated for a family of four gelators with lysine units attached to each end of an aliphatic diamine, with different peripheral groups (Z or Bee) in different locations on the periphery of the molecule. By tuning the peripheral protecting groups of the gelators, the solubility of the system is modified, which in turn controls the saturation point of the system and hence controls the concentration at which network formation takes place. We report that the critical concentration (C-crit) of gelator incorporated into the solid-phase sample-spanning network within the gel is invariant of gelator structural design. However, because some systems have higher solubilities, they are less effective gelators and require the application of higher total concentrations to achieve gelation, hence shedding light on the role of the MGC parameter in gelation. Furthermore, gelator structural design also modulates the level of cooperative self-assembly through solubility effects, as determined by applying a cooperative binding model to NMR data. Finally, the effect of gelator chemical design on the spatial organization of the networked gelator was probed by small-angle neutron and X-ray scattering (SANS/SAXS) on the native gel, and a tentative self-assembly model was proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a kinetic model for transformations between different self-assembled lipid structures. The model shows how data on the rates of phase transitions between mesophases of different geometries can be used to provide information on the mechanisms of the transformations and the transition states involved. This can be used, for example, to gain an insight into intermediate structures in cell membrane fission or fusion. In cases where the monolayer curvature changes on going from the initial to the final mesophase, we consider the phase transition to be driven primarily by the change in the relaxed curvature with pressure or temperature, which alters the relative curvature elastic energies of the two mesophase structures. Using this model, we have analyzed previously published kinetic data on the inter-conversion of inverse bicontinuous cubic phases in the 1-monoolein-30 wt% water system. The data are for a transition between QII(G) and QII(D) phases, and our analysis indicates that the transition state more closely resembles the QII(D) than the QII(G) phase. Using estimated values for the monolayer mean curvatures of the QII(G) and QII(D) phases of -0.123 nm(-1) and -0.133 nm(-1), respectively, gives values for the monolayer mean curvature of the transition state of between -0.131 nm(-1) and -0.132 nm(-1). Furthermore, we estimate that several thousand molecules undergo the phase transition cooperatively within one "cooperative unit", equivalent to 1-2 unit cells of QII(G) or 4-10 unit cells of QII(D).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is one of the major challenges facing economic systems at the start of the 21st century. Reducing greenhouse gas emissions will require both restructuring the energy supply system (production) and addressing the efficiency and sufficiency of the social uses of energy (consumption). The energy production system is a complicated supply network of interlinked sectors with 'knock-on' effects throughout the economy. End use energy consumption is governed by complex sets of interdependent cultural, social, psychological and economic variables driven by shifts in consumer preference and technological development trajectories. To date, few models have been developed for exploring alternative joint energy production-consumption systems. The aim of this work is to propose one such model. This is achieved in a methodologically coherent manner through integration of qualitative input-output models of production, with Bayesian belief network models of consumption, at point of final demand. The resulting integrated framework can be applied either (relatively) quickly and qualitatively to explore alternative energy scenarios, or as a fully developed quantitative model to derive or assess specific energy policy options. The qualitative applications are explored here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic repair rate models for repairable systems may be homogeneous Poisson processes, renewal processes or nonhomogeneous Poisson processes. In addition to these models, geometric processes are studied occasionally. Geometric processes, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensity. This paper deals with the reliability modelling of the failure process of repairable systems when the failure intensity shows a bathtub type non-monotonic behaviour. A new stochastic process, an extended Poisson process, is introduced. Reliability indices and parameter estimation are presented. A comparison of this model with other repair models based on a dataset is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of ignorance-driven decision making have been employed to analyse when ignorance should prove advantageous on theoretical grounds or else they have been employed to examine whether human behaviour is consistent with an ignorance-driven inference strategy (e. g., the recognition heuristic). In the current study we examine whether-under conditions where such inferences might be expected-the advantages that theoretical analyses predict are evident in human performance data. A single experiment shows that, when asked to make relative wealth judgements, participants reliably use recognition as a basis for their judgements. Their wealth judgements under these conditions are reliably more accurate when some of the target names are unknown than when participants recognize all of the names (a "less-is-more effect"). These results are consistent across a number of variations: the number of options given to participants and the nature of the wealth judgement. A basic model of recognition-based inference predicts these effects.