976 resultados para nucleon-nucleon cross sections


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An ab initio approach has been applied to study multiphoton detachment rates for the negative hydrogen ion in the lowest nonvanishing order of perturbation theory. The approach is based on the use of B splines allowing an accurate treatment of the electronic repulsion. Total detachment rates have been determined for two- to six-photon processes as well as partial rates for detachment into the different final symmetries. It is shown that B-spline expansions can yield accurate continuum and bound-state wave functions in a very simple manner. The calculated total rates for two- and three-photon detachment are in good agreement with other perturbative calculations. For more than three-photon detachment little information has been available before now. While the total cross sections show little structure, a fair amount of structure is predicted in the partial cross sections. In the two-photon process, it is shown that the detached electrons mainly have s character. For four- and six-photon processes, the contribution from the d channel is the most important. For three- and five-photon processes p electrons dominate the electron emission spectrum. Detachment rates for s and p electrons show minima as a function of photon energy. © 1994 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Placing metallic nanoparticles inside cavities, rather than in dimers, greatly improves their plasmonic response. Such particle-in-cavity (PIC) hybrid architectures are shown to produce extremely strong field enhancement at the particle cavity junctions, arising from the cascaded focusing of large optical cross sections into small gaps. These simply constructed PIC structures produce the strongest field enhancement for coupled nanoparticles, up to 90% stronger than for a dimer. The coupling is found to follow a universal power law with particle surface separation, both for field enhancements and resonant wavelength shifts. Significantly enhanced Raman signals are experimentally observed for molecules adsorbed in such PIC structures, in quantitive agreement with theoretical calculations. PIC architectures may have important implications in many applications, such as reliable single molecule sensing and light harvesting in plasmonic photovoltaic devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Absolute photodetachment cross sections of two anions of astrophysical importance CN- and C3N- were measured to be (1.18 +- (0.03)_stat (0.17)_sys) * 10^-17 cm^2 and (1.43 +- (0.14)_stat (0.37)_sys) * 10^-17 cm^2 respectively at the ultraviolet wavelength of 266 nm (4.66 eV). These relatively large values of the cross sections imply that photodetachment can play a major role in the destruction mechanisms of these anions particularly in photon-dominated regions. We have therefore carried out model calculations using the newly measured cross sections to investigate the abundance of these molecular anions in the cirumstellar envelope of the carbon-rich star IRC+10216. The model predicts the relative importance of the various mechanisms of formation and destruction of these species in different regions of the envelope. UV photodetachment was found to be the major destruction mechanism for both CN- and C3N- anions in those regions of the envelope, where they occur in peak abundance. It was also found that photodetachment plays a crucial role in the degradation of these anions throughout the circumstellar envelope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scenario of electron capture and loss has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pretensioned concrete members are designed and manufactured by using at least two materials: concrete and prestressing reinforcement. Also, two main stages must be considered: prestress transfer and member loading. Hence, the behavior of these members depends strongly on the reinforcement-to-concrete bond performance and prestress losses. In this paper, a testing technique to measure the specific parameters related with the involved phenomena is presented. The testing technique is based on the analysis of series of specimens varying in embedment length to simulate several cross sections at only one end of a pretensioned concrete member. Each specimen is characterized by means of the sequential release of the prestress transfer (detensioning) and the pull-out (loading) operation. The test provides data on prestressing force, transmission length (initial and long-term), anchorage length (without and with slip), reinforcement slips, bond stresses, longitudinal concrete strains, concrete modulus of elasticity, and prestress losses (instantaneous and time-dependent).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analytical model to predict strand slips within both transmission and anchorage lengths in pretensioned prestressed concrete members is presented. This model has been derived from an experimental research work by analysing the bond behavior and determining the transmission and anchorage lengths of seven-wire prestressing steel strands in different concrete mixes. A testing technique based on measuring the prestressing strand force in specimens with different embedment lengths has been used. The testing technique allows measurement of free end slip as well as indirect determination of the strand slip at different cross sections of a member without interfering with bond phenomena. The experimental results and the proposed model for strand slip distribution have been compared with theoretical predictions according to different equations in the literature and with experimental results obtained by other researchers. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a time-dependent R-matrix theory generalized to describe double-ionization processes. The method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a detailed B-spline-based wave-function description in an extended inner region with a single-electron outer region containing channels representing both single ionization and double ionization. A comparison of wave-function densities for different box sizes demonstrates that the flow between the two regions is described with excellent accuracy. The obtained two-photon double-ionization cross sections are in excellent agreement with other cross sections available. Compared to calculations fully contained within a finite inner region, the present calculations can be propagated over the time it takes the slowest electron to reach the boundary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relativistic R-matrix method is used to calculate elastic and inelastic cross sections for electrons incident on caesium atoms with energies from 0-3 eV. These cross sections reveal a wealth of resonance structure in this energy range. The differential cross sections as well as the spin polarisation function S( theta ) and the left-right asymmetry function S( theta ) are calculated and enable conclusions to be drawn on the importance of spin-dependent interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relativistic R-matrix method is used to calculate elastic and inelastic cross sections for electrons incident on caesium atoms with energies from 0-3 eV. In addition to the total cross sections, results are presented on the differential cross sections, sigma , and the spin polarisation, P, of the scattered electrons as a function of energy at the scattering angles 10 degrees , 50 degrees , 90 degrees and 150 degrees . The calculation reveals a wealth of resonances around the P and P thresholds. The resonances are analysed in detail and their role in the scattering process is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phaseshifts, differential, total and momentum transfer cross sections are calculated using an R-matrix approach for the elastic scattering of electrons by argon atoms in the impact energy range 0-19 eV. The coupled-state calculation is based upon a single-configuration atomic ground-state wavefunction coupled to a P pseudostate. A critical assessment of earlier theoretical and experimental data is made and the conclusion is reached that the present results are the most satisfactory over the entire energy range considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Absorption or emission lines of Fe II are observed in many astrophysical spectra and accurate atomic data are required to interpret these lines. The calculation of electron-impact excitation rates for transitions among even the lowest lying levels of Fe II is a formidable task for theoreticians.

Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Fe II for low-lying forbidden transitions among the lowest 16 fine-structure levels arising from the four LS states 3d(6)4s D-6(e), 3d(7) F-4(e), 3d(6)4s D-4(e), and 3d(7) P-4(e). The effective collision strengths are calculated for a wide range of electron temperatures of astrophysical importance from 30-100 000 K.

Methods. The parallel suite of Breit-Pauli codes are utilised to compute the collision cross sections for electron-impact excitation of Fe II and relativistic terms are included explicitly in both the target and the scattering approximation. 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7), and 3d(6)4p were included in the wavefunction representation of the target, including all doublet, quartet, and sextet terms. Collision strengths for a total of 34191 individual transitions were computed.

Results. A detailed comparison is made with previous theoretical works and significant differences were found to occur in the effective collision strengths, particularly at low temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We employ the impulse approximation for a description of positronium-atom scattering. Our analysis and calculations of Ps-Kr and Ps-Ar collisions provide a theoretical explanation of the similarity between the cross sections for positronium scattering and electron scattering for a range of atomic and molecular targets observed by S. J. Brawley et al. [Science 330, 789 (2010)].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [I. I. Fabrikant and G. F. Gribakin, Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at v < 1 a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the intermediate energy range from the Ps ionization threshold up to v ∼ 2 a.u., where the two are similar.