973 resultados para noradrenergic modulation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In order to modulate uterine inflammatory response and evaluate the effect of corticosteroid therapy on fertility, 90 cycles of 45 mares were used for artificial insemination with frozen semen, using three different protocols: G1 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma; G2 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + corticosteroid therapy; G3 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma + corticosteroid therapy. Corticosteroid therapy consisted on one administration of prednisolone acetate (0.1 mg/Kg - Predef (R)) when mares presented 35mm follicles and uterine edema, concomitantly with the unique dose of hCG (human chorionic gonadotropin), then repeated each 12 hours until ovulation. on first fertility trial, with normal mares, there was no difference between control and treated groups (p>0.05), using seminal plasma associated with corticosteroid therapy (40 vs. 38%, respectively) or corticosteroid therapy alone (40 vs. 45% respectively). The second fertility trial, performed with mares with previous history of post-insemination endometritis, demonstrated a significant increase of pregnancy rate when mares were submitted to corticosteroid therapy (0.0 vs. 64.5%, respectively; p<0.05). Corticosteroid therapy was shown to be safe, with no physical or reproductive alterations on treated mares, demonstrating to be an adequate option to those animals with history of post-breeding or post-insemination endometritis. Further clinical research is necessary to confirm these results and contribute to the establishment of preventive therapy for cases of post-insemination endometritis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the importance of androgen on responses to alpha and beta (norepinephrine) and alpha(1) (phenylephrine and methoxamine) agonists in vasa deferentia isolated from adult, immature, cryptorchid, and castrated rats submitted to swimming-induced acute stress. The participation of adrenergic nervous terminals was also investigated. Acute stress was shown to induce a significant subsensitivity to norepinephrine only in vas deferens from adult rats with normal levels of androgens. In addition, sympathetic denervation of the vas deferens prevented the appearance of subsensitivity. Subsensitivity was not seen when the experiments were carried out using phenylephrine and methoxamine. This shows that subsensitivity to norepinephrine in this acute stress situation may depend on other factors such as neuronal uptake, but not on alpha(1)-adrenoceptor response. Thus, when animals are exposed to acute stressogenic situations, this subsensitivity requires physiological levels of androgens to establish, and may also be involved in body homeostasis. (C) 1999 Academic Press.
Resumo:
beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.
Resumo:
The anti-inflammatory activity of 14 commercial ethanol extracts of propolis were evaluated, using a mouse ear inflammation model induced by arachidonic acid. Indometacin was also assayed as standard anti-inflammatory agent. Different activities were observed and discussed. This model could be used to assess the anti-inflammatory quality of propolis extracts and facilitate their posological usage on skin edema resulting from wounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. In the present study, we assessed the role of LC noradrenergic neurons in the cardiorespiratory and thermal responses to hypercapnia. To selectively destroy LC noradrenergic neurons, we administered 6-hydroxydopamine (6-OHDA) bilaterally into the LC of male Wistar rats. Control animals had vehicle (ascorbic acid) injected (sham group) into the LC. Pulmonary ventilation (plethysmograph), mean arterial pressure (MAP), heart rate (HR), and body core temperature (T-c, data loggers) were measured followed by 60 min of hypercapnic exposure (7% CO2 in air). To verify the correct placement and effectiveness of the chemical lesions, tyrosine hydroxylase immunoreactivity was performed. Hypercapnia caused an increase in pulmonary ventilation in all groups, which resulted from increases in respiratory frequency and tidal volume (V-T) in sham-operated and 6-OHDA-lesioned groups. The hypercapnic ventilatory response was significantly decreased in 6-OHDA-lesioned rats compared with sham group. This difference was due to a decreased V-T in 6-OHDA rats. LC chemical lesion or hypercapnia did not affect MAP, HR, and T-c. Thus, we conclude that LC noradrenergic neurons modulate hypercapnic ventilatory response but play no role in cardiovascular and thermal regulation under resting conditions.