888 resultados para nonlocal theories and models
Resumo:
This work proposes a model for planning of education based on resources and layers. Each learning material or concept is determined by certain characteristics: a layer and a list of resources and resource values. Models of studied subject domain, learner, information and verification unit, learning material, plan of education and education have been defined. The plan of education can be conventional, statical, author’s and dynamic. Algorithms for course generation, dynamic plan generation and carrying out education are presented. The proposed model for planning of education based on resources and layers has been included in the system PeU.
Resumo:
(Summary of: Varbanova-Dencheva, K. Intellectual communications and contemporarly technologies. Alternatives of the science libraries. Sofia, Marin Drinov academic publishing house. 2003, 114p. ) The new technologies and the globalization are the factors which have brought essential changes in human society and its environment. The unceasing dynamic changes imposed new strategies for survival and prosperity of institutions and people in the new conditions. The spheres with greatest potential for achieving competition priority are compatible to the fastness of research results implementation in each field of human activity. The extended knowledge requires narrower specialization as well as interdisciplinarity to solve the arising problems. The new research fields and trends are a synthesis of science and high technologies determined by the new discoveries. The present study aims at finding answers to the questions about the place of science library in the dynamic restructuring of research environment. The necessity of transformation of the scientific library’s genetically set functions from a guardian of the achieved knowledge to an active participant in the creation of new knowledge is a natural consequence of the processes and tendencies of the social medium. The priorities of Europe and USA for intensive creation of knowledge economics are at the first place and this requires intensification of that research an integral part of which are the new communications realized at a new technological level.
Resumo:
Structural monitoring and dynamic identification of the manmade and natural hazard objects is under consideration. Math model of testing object by set of weak stationary dynamic actions is offered. The response of structures to the set of signals is under processing for getting important information about object condition in high frequency band. Making decision procedure into active monitoring system is discussed as well. As an example the monitoring outcome of pillar-type monument is given.
Resumo:
The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.
Resumo:
Micro Electro Mechanical Systems (MEMS) have already revolutionized several industries through miniaturization and cost effective manufacturing capabilities that were never possible before. However, commercially available MEMS products have only scratched the surface of the application areas where MEMS has potential. The complex and highly technical nature of MEMS research and development (R&D) combined with the lack of standards in areas such as design, fabrication and test methodologies, makes creating and supporting a MEMS R&D program a financial and technological challenge. A proper information technology (IT) infrastructure is the backbone of such research and is critical to its success. While the lack of standards and the general complexity in MEMS R&D makes it impossible to provide a “one size fits all” design, a systematic approach, combined with a good understanding of the MEMS R&D environment and the relevant computer-aided design tools, provides a way for the IT architect to develop an appropriate infrastructure.
Resumo:
* The research was supported by INTAS 00-397 and 00-626 Projects.
Resumo:
The paper deals with the generalisations of the Hough Transform making it the mean for analysing uncertainty. Some results related Hough Transform for Euclidean spaces are represented. These latter use the powerful means of the Generalised Inverse for description the Transform by itself as well as its Accumulator Function.
Resumo:
Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be solved. However, usually SP/PS are not substantiated well enough, because their development is based on a collective expertise in which logic of natural language and expert estimation methods are used. That is why scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and vague problems.
Resumo:
Development-engineers use in their work languages intended for software or hardware systems design, and test engineers utilize languages effective in verification, analysis of the systems properties and testing. Automatic interfaces between languages of these kinds are necessary in order to avoid ambiguous understanding of specification of models of the systems and inconsistencies in the initial requirements for the systems development. Algorithm of automatic translation of MSC (Message Sequence Chart) diagrams compliant with MSC’2000 standard into Petri Nets is suggested in this paper. Each input MSC diagram is translated into Petri Net (PN), obtained PNs are sequentially composed in order to synthesize a whole system in one final combined PN. The principle of such composition is defined through the basic element of MSC language — conditions. While translating reference table is developed for maintenance of consistent coordination between the input system’s descriptions in MSC language and in PN format. This table is necessary to present the results of analysis and verification on PN in suitable for the development-engineer format of MSC diagrams. The proof of algorithm correctness is based on the use of process algebra ACP. The most significant feature of the given algorithm is the way of handling of conditions. The direction for future work is the development of integral, partially or completely automated technological process, which will allow designing system, testing and verifying its various properties in the one frame.
Resumo:
Reflective Logic and Default Logic are both generalized so as to allow universally quantified variables to cross modal scopes whereby the Barcan formula and its converse hold. This is done by representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before the defaults. The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are then compared by deriving metatheorems of Z that express their relationships. The main result is to show that every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the equivalence for Quantified Reflective Logic. It is further shown that Quantified Reflective Logic and Quantified Default Logic have exactly the same solutions when no default has an entailment condition.
Resumo:
∗ Thematic Harmonisation in Electrical and Information EngineeRing in Europe,Project Nr. 10063-CP-1-2000-1-PT-ERASMUS-ETNE.
Resumo:
The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.
Resumo:
Various combinatorial problems are effectively modelled in terms of (0,1) matrices. Origins are coming from n-cube geometry, hypergraph theory, inverse tomography problems, or directly from different models of application problems. Basically these problems are NP-complete. The paper considers a set of such problems and introduces approximation algorithms for their solutions applying Lagragean relaxation and related set of techniques.
Resumo:
A general technique for transforming a timed finite state automaton into an equivalent automated planning domain based on a numerical parameter model is introduced. Timed transition automata have many applications in control systems and agents models; they are used to describe sequential processes, where actions are labelling by automaton transitions subject to temporal constraints. The language of timed words accepted by a timed automaton, the possible sequences of system or agent behaviour, can be described in term of an appropriate planning domain encapsulating the timed actions patterns and constraints. The time words recognition problem is then posed as a planning problem where the goal is to reach a final state by a sequence of actions, which corresponds to the timed symbols labeling the automaton transitions. The transformation is proved to be correct and complete and it is space/time linear on the automaton size. Experimental results shows that the performance of the planning domain obtained by transformation is scalable for real world applications. A major advantage of the planning based approach, beside of the solving the parsing problem, is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation.
Resumo:
Transition P systems are computational models based on basic features of biological membranes and the observation of biochemical processes. In these models, membrane contains objects multisets, which evolve according to given evolution rules. In the field of Transition P systems implementation, it has been detected the necessity to determine whichever time are going to take active evolution rules application in membranes. In addition, to have time estimations of rules application makes possible to take important decisions related to the hardware / software architectures design. In this paper we propose a new evolution rules application algorithm oriented towards the implementation of Transition P systems. The developed algorithm is sequential and, it has a linear order complexity in the number of evolution rules. Moreover, it obtains the smaller execution times, compared with the preceding algorithms. Therefore the algorithm is very appropriate for the implementation of Transition P systems in sequential devices.