979 resultados para nonlinear boundary conditions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In late February 2010 the extraordinary windstorm Xynthia crossed over Southwestern and Central Europe and caused severe damage, affecting particularly the Spanish and French Atlantic coasts. The storm was embedded in uncommon large-scale atmospheric and boundary conditions prior to and during its development, namely enhanced sea surface temperatures (SST) within the low-level entrainment zone of air masses, an unusual southerly position of the polar jet stream, and a remarkable split jet structure in the upper troposphere. To analyse the processes that led to the rapid intensification of this exceptional storm originating close to the subtropics (30°N), the sensitivity of the cyclone intensification to latent heat release is determined using the regional climate model COSMO-CLM forced with ERA-Interim data. A control simulation with observed SST shows that moist and warm air masses originating from the subtropical North Atlantic were involved in the cyclogenesis process and led to the formation of a vertical tower with high values of potential vorticity (PV). Sensitivity studies with reduced SST or increased laminar boundary roughness for heat led to reduced surface latent heat fluxes. This induced both a weaker and partly retarded development of the cyclone and a weakening of the PV-tower together with reduced diabatic heating rates, particularly at lower and mid levels. We infer that diabatic processes played a crucial role during the phase of rapid deepening of Xynthia and thus to its intensity over the Southeastern North Atlantic. We suggest that windstorms like Xynthia may occur more frequently under future climate conditions due to the warming SSTs and potentially enhanced latent heat release, thus increasing the windstorm risk for Southwestern Europe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale-interaction’ problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer’s law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A minimal model of species migration is presented which takes the form of a parabolic equation with boundary conditions and initial data. Solutions to the differential problem are obtained that can be used to describe the small- and large-time evolution of a species distribution within a bounded domain. These expressions are compared with the results of numerical simulations and are found to be satisfactory within appropriate temporal regimes. The solutions presented can be used to describe existing observations of nematode distributions, can be used as the basis for further work on nematode migration, and may also be interpreted more generally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seventeen simulations of the Last Glacial Maximum (LGM) climate have been performed using atmospheric general circulation models (AGCM) in the framework of the Paleoclimate Modeling Intercomparison Project (PMIP). These simulations use the boundary conditions for CO2, insolation and ice-sheets; surface temperatures (SSTs) are either (a) prescribed using CLIMAP data set (eight models) or (b) computed by coupling the AGCM with a slab ocean (nine models). The present-day (PD) tropical climate is correctly depicted by all the models, except the coarser resolution models, and the simulated geographical distribution of annual mean temperature is in good agreement with climatology. Tropical cooling at the LGM is less than at middle and high latitudes, but greatly exceeds the PD temperature variability. The LGM simulations with prescribed SSTs underestimate the observed temperature changes except over equatorial Africa where the models produce a temperature decrease consistent with the data. Our results confirm previous analyses showing that CLIMAP (1981) SSTs only produce a weak terrestrial cooling. When SSTs are computed, the models depict a cooling over the Pacific and Indian oceans in contrast with CLIMAP and most models produce cooler temperatures over land. Moreover four of the nine simulations, produce a cooling in good agreement with terrestrial data. Two of these model results over ocean are consistent with new SST reconstructions whereas two models simulate a homogeneous cooling. Finally, the LGM aridity inferred for most of the tropics from the data, is globally reproduced by the models with a strong underestimation for models using computed SSTs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on a set of paleoclimate simulations for 21, 16, 14, 11 and 6 ka (thousands of years ago) carried out with the Community Climate Model, Version 1 (CCM1) of the National Center for Atmospheric Research (NCAR). This climate model uses four interactive components that were not available in our previous simulations with the NCAR CCM0 (COHMAP, 1988Science, 241, 1043–1052; Wright et al., 1993Global Climate Since the Last Glocial Maximum, University of Minnesota Press, MN): soil moisture, snow hydrology, sea-ice, and mixed-layer ocean temperature. The new simulations also use new estimates of ice sheet height and size from ( Peltier 1994, Science, 265, 195–201), and synchronize the astronomically dated orbital forcing with the ice sheet and atmospheric CO2 levels corrected from radiocarbon years to calendar years. The CCM1 simulations agree with the previous simulations in their most general characteristics. The 21 ka climate is cold and dry, in response to the presence of the ice sheets and lowered CO2 levels. The period 14–6 ka has strengthened northern summer monsoons and warm mid-latitude continental interiors in response to orbital changes. Regional differences between the CCM1 and CCM0 simulations can be traced to the effects of either the new interactive model components or the new boundary conditions. CCM1 simulates climate processes more realistically, but has additional degrees of freedom that can allow the model to ‘drift’ toward less realistic solutions in some instances. The CCM1 simulations are expressed in terms of equilibrium vegetation using BIOME 1, and indicate large shifts in biomes. Northern tundra and forest biomes are displaced southward at glacial maximum and subtropical deserts contract in the mid-Holocene when monsoons strengthen. These vegetation changes could, if simulated interactively, introduce additional climate feedbacks. The total area of vegetated land remains nearly constant through time because the exposure of continental shelves with lowered sea level largely compensates for the land covered by the expanded ice sheets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilise the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross-section geometry and channel long-profile variability on flood dynamics is examined using an ensemble of a 1D-2D hydraulic model (LISFLOOD-FP) of the 1:2102 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of hypothetical scenarios of channel morphology were constructed based on a simple velocity based model of critical entrainment. A Monte-Carlo simulation framework was used to quantify the effects of channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics, and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected a good approximation of the observed patterns of spatial erosion despite its overestimation of erosion depths. The effect of uncertainty on channel long-profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel-bed rivers like the one used in this research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The multicomponent nonideal gas lattice Boltzmann model by Shan and Chen (S-C) is used to study the immiscible displacement in a sinusoidal tube. The movement of interface and the contact point (contact line in three-dimension) is studied. Due to the roughness of the boundary, the contact point shows "stick-slip" mechanics. The "stick-slip" effect decreases as the speed of the interface increases. For fluids that are nonwetting, the interface is almost perpendicular to the boundaries at most time, although its shapes at different position of the tube are rather different. When the tube becomes narrow, the interface turns a complex curves rather than remains simple menisci. The velocity is found to vary considerably between the neighbor nodes close to the contact point, consistent with the experimental observation that the velocity is multi-values on the contact line. Finally, the effect of three boundary conditions is discussed. The average speed is found different for different boundary conditions. The simple bounce-back rule makes the contact point move fastest. Both the simple bounce-back and the no-slip bounce-back rules are more sensitive to the roughness of the boundary in comparison with the half-way bounce-back rule. The simulation results suggest that the S-C model may be a promising tool in simulating the displacement behaviour of two immiscible fluids in complex geometry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Langevin dynamics simulations are used to investigate the equilibrium magnetization properties and structure of magnetic dipolar fluids. The influence of using different boundary conditions are systematically studied. Simulation results on the initial susceptibility and magnetization curves are compared with theoretical predictions. The effect of particle aggregation is discussed in detail by performing a cluster analysis of the microstructure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Configurations of supercooled liquids residing in their local potential minimum (i.e. in their inherent structure, IS) were found to support a non-zero shear stress. This IS stress was attributed to the constraint to the energy minimization imposed by boundary conditions, which keep size and shape of the simulation cell fixed. In this paper we further investigate the influence of these boundary conditions on the IS stress. We investigate its importance for the computation of the low frequency shear modulus of a glass obtaining a consistent picture for the low- and high frequency shear moduli over the full temperature range. Hence, we find that the IS stress corresponds to a non-thermal contribution to the fluctuation term in the Born-Green expression. This leads to an unphysical divergence of the moduli in the low temperature limit if no proper correction for this term is applied. Furthermore, we clarify the IS stress dependence on the system size and put its origin on a more formal basis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Weather, climate, water and related environmental conditions, including air quality, all have profound effects on cities. A growing importance is being attached to understanding and predicting atmospheric conditions and their interactions with other components of the Earth System in cities, at multiple scales. We highlight the need for: (1) development of high-resolution coupled environmental prediction models that include realistic city-specific processes, boundary conditions and fluxes; (2) enhanced observational systems to support (force, constrain, evaluate) these models to provide high quality forecasts for new urban services; (3) provision of meteorological and related environmental variables to aid protection of human health and the environment; (4) new targeted and customized delivery platforms using modern communication techniques, developed with users to ensure that services, advice and warnings result in appropriate action; and (5) development of new skill and capacity to make best use of technologies to deliver new services in complex, challenging and evolving city environments. We highlight the importance of a coordinated and strategic approach that draws on, but does not replicate, past work to maximize benefits to stakeholders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter focuses upon the careers of temporary workers. Temporary employment for many workers presents a route to permanent employment. Other workers, however, get trapped into temporary employment or cycle between unstable jobs and spells of unemployment. Predictors of such transitions are multiple. We selected two broad categories, namely perceived employability from the area of career research and health and well-being from the area of occupational health and well-being research. The overall conclusion is that the association between temporary employment and both perceived employability and health and well-being is inconclusive. This suggests that there are boundary conditions that may make some temporary workers successful and others not. Risk factors include dynamics related to the dual labor market, including lower job quality, lower investments on the part of employers, and negative stereotyping of temporary workers as second-class citizens. On the positive side, many temporary workers have learned to manage their careers in the sense that they invest in training and in continuous job search.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The general circulation models used to simulate global climate typically feature resolution too coarse to reproduce many smaller-scale processes, which are crucial to determining the regional responses to climate change. A novel approach to downscale climate change scenarios is presented which includes the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic and European climate. The goal of this paper is to introduce the global ocean-regional atmosphere coupling concept and to show the potential benefits of this model system to simulate present-day climate. A global ocean-sea ice-marine biogeochemistry model (MPIOM/HAMOCC) with regionally high horizontal resolution is coupled to an atmospheric regional model (REMO) and global terrestrial hydrology model (HD) via the OASIS coupler. Moreover, results obtained with ROM using NCEP/NCAR reanalysis and ECHAM5/MPIOM CMIP3 historical simulations as boundary conditions are presented and discussed for the North Atlantic and North European region. The validation of all the model components, i.e., ocean, atmosphere, terrestrial hydrology, and ocean biogeochemistry is performed and discussed. The careful and detailed validation of ROM provides evidence that the proposed model system improves the simulation of many aspects of the regional climate, remarkably the ocean, even though some biases persist in other model components, thus leaving potential for future improvement. We conclude that ROM is a powerful tool to estimate possible impacts of climate change on the regional scale.