900 resultados para noncompetitive inhibitor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

KRAS activation and PTEN inactivation are frequent events in endometrial tumorigenesis, occurring in 10% to 30% and 26% to 80% of endometrial cancers, respectively. Because we have recently shown activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 16% of endometrioid endometrial cancers, we sought to determine the genetic context in which FGFR2 mutations occur. Analysis of 116 primary endometrioid endometrial cancers revealed that FGFR2 and KRAS mutations were mutually exclusive, whereas FGFR2 mutations were seen concomitantly with PTEN mutations. Here, we show that shRNA knockdown of FGFR2 or treatment with a pan-FGFR inhibitor, PD173074, resulted in cell cycle arrest and induction of cell death in endometrial cancer cells with activating mutations in FGFR2. This cell death in response to FGFR2 inhibition occurred within the context of loss-of-function mutations in PTEN and constitutive AKT phosphorylation, and was associated with a marked reduction in extracellular signal-regulated kinase 1/2 activation. Together, these data suggest that inhibition of FGFR2 may be a viable therapeutic option in endometrial tumors possessing activating mutations in FGFR2, despite the frequent abrogation of PTEN in this cancer type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gonadotropin hypothesis proposes that elevated serum gonadotropin levels may increase the risk of epithelial ovarian cancer (EOC). We have studied the effect of treating EOC cell lines (OV207 and OVCAR-3) with FSH or LH. Both gonadotropins activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and increased cell migration that was inhibited by the MAPK 1 inhibitor PD98059. Both extra- and intracellular calcium ion signalling were implicated in gonadotropin-induced ERK1/2 activation as treatment with either the calcium chelator EGTA or an inhibitor of intracellular calcium release, dantrolene, inhibited gonadotropin-induced ERK1/2 activation. Verapamil was also inhibitory, indicating that gonadotropins activate calcium influx via L-type voltage-dependent calcium channels. The cAMP/protein kinase A (PKA) pathway was not involved in the mediation of gonadotropin action in these cells as gonadotropins did not increase intracellular cAMP formation and inhibition of PKA did not affect gonadotropin-induced phosphorylation of ERK1/2. Activation of ERK1/2 was inhibited by the protein kinase C (PKC) inhibitor GF 109203X as well as by the PKCδ inhibitor rottlerin, and downregulation of PKCδ was inhibited by small interfering RNA (siRNA), highlighting the importance of PKCδ in the gonadotropin signalling cascade. Furthermore, in addition to inhibition by PD98059, gonadotropin-induced ovarian cancer cell migration was also inhibited by verapamil, GF 109203X and rottlerin. Similarly, gonadotropin-induced proliferation was inhibited by PD98059, verapamil, GF 109203X and PKCδ siRNA. Taken together, these results demonstrate that gonadotropins induce both ovarian cancer cell migration and proliferation by activation of ERK1/2 signalling in a calcium- and PKCδ-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumor suppressor PTEN antagonizes phosphatidylinositol 3-kinase (PI3K), which contributes to tumorigenesis in many cancer types. While PTEN mutations occur in some melanomas, their precise mechanistic consequences have yet to be elucidated. We sought to identify novel downstream effectors of PI3K using a combination of genomic and functional tests. Microarray analysis of 53 melanoma cell lines identified 610 genes differentially expressed (P<0.05) between wild-type lines and those with PTEN aberrations. Many of these genes are known to be involved in the PI3K pathway and other signaling pathways influenced by PTEN. Validation of differential gene expression by qRT-PCR was performed in the original 53 cell lines and an independent set of 18 melanoma lines with known PTEN status. Osteopontin (OPN), a secreted glycophosphoprotein that contributes to tumor progression, was more abundant at both the mRNA and protein level in PTEN mutants. The inverse correlation between OPN and PTEN expression was validated (P<0.02) by immunohistochemistry using melanoma tissue microarrays. Finally, treatment of cell lines with the PI3K inhibitor LY294002 caused a reduction in expression of OPN. These data indicate that OPN acts downstream of PI3K in melanoma and provides insight into how PTEN loss contributes to melanoma development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CDKN2 gene, encoding the cyclin dependent kinase inhibitor p16, is a tumour suppressor gene involved in melanoma and maps to chromosome band 9p22. Mutations or interstitial deletions of this gene have been found both in the germline of familial melanoma cases and somatically in melanoma cell lines. Previous mutation analyses of melanoma cell lines have indicated a high frequency of C:G to T:A transitions, with all of these mutations occurring at dipyrimidine sites. Including three melanoma cell lines carrying tandem CC to TT mutations, the spectrum of mutations so far reported indicates a possible role for u.v. radiation in the mutagenesis of this gene in some tumours. To further examine this hypothesis we have characterised mutations of the CDKN2 gene in 30 melanoma cell lines. Nineteen lines carried complete or partial homozygous deletions of the gene. Of the remaining cell lines, eight were shown by direct sequencing of PCR products from exon 1 and exon 2 to carry a total of nine different mutations of CDKN2. Two cell lines carried tandem CC to TT mutations and a high rate of C:G to T:A transitions was observed. This study provides further evidence for the role of u.v. light in the genesis of melanoma, with one target being the CDKN2 tumour suppressor gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CDKN2 gene, encoding the cyclin-dependent kinase inhibitor p16, is a tumour suppressor gene that maps to chromosome band 9p21-p22. The most common mechanism of inactivation of this gene in human cancers is through homozygous deletion; however, in a smaller proportion of tumours and tumour cell lines intragenic mutations occur. In this study we have compiled a database of over 120 published point mutations in the CDKN2 gene from a wide variety of tumour types. A further 50 deletions, insertions, and splice mutations in CDKN2 have also been compiled. Furthermore, we have standardised the numbering of all mutations according to the full-length 156 amino acid form of p16. From this study we are able to define several hot spots, some of which occur at conserved residues within the ankyrin domains of p16. While many of the hotspots are shared by a number of cancers, the relative importance of each position varies, possibly reflecting the role of different carcinogens in the development of certain tumours. As reported previously, the mutational spectrum of CDKN2 in melanomas differs from that of internal malignancies and supports the involvement of UV in melanoma tumorigenesis. Notably, 52% of all substitutions in melanoma-derived samples occurred at just six nucleotide positions. Nonsense mutations comprise a comparatively high proportion of mutations present in the CDKN2 gene, and possible explanations for this are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CDKN2A gene maps to chromosome 9p21-22 and is responsible for melanoma susceptibility in some families. Its product, p16, binds specifically to CDK4 and CDK6 in vitro and in vivo, inhibiting their kinase activity. CDKN2A is homozygously deleted or mutated in a large proportion of tumor cell lines and some primary tumors, including melanomas. The aim of this study was to investigate the involvement of CDKN2A and elucidate the mechanisms of p16 inactivation in a panel of 60 cell lines derived from sporadic melanomas. Twenty-six (43%) of the melanoma lines were homozygously deleted for CDKN2A, and an additional 15 (25%) lines carried missense, nonsense, or frameshift mutations. All but one of the latter group were shown by microsatellite analysis to be hemizygous for the region of 9p surrounding CDKN2A. p16 was detected by Western blotting in only five of the cell lines carrying mutations. Immunoprecipitation of p16 in these lines, followed by Western blotting to detect the coprecipitation of CDK4 and CDK6, revealed that p16 was functionally compromised in all cell lines but the one that carried a heterozygous CDKN2A mutation. In the remaining 19 lines that carried wild-type CDKN2A alleles, Western blot analysis and immunoprecipitation indicated that 11 cell lines expressed a wild-type protein. Northern blotting was performed on the remaining eight cell lines and revealed that one cell line carried an aberrantly sized RNA transcript, and two other cell lines failed to express RNA. The promoter was found to be methylated in five cell lines that expressed CDKN2A transcript but not p16. Presumably, the message seen by Northern blotting in these cell lines is the result of cross-hybridization of the total cDNA probe with the exon 1beta transcript. Microsatellite analysis revealed that the majority of these cell lines were hemi/homozygous for the region surrounding CDKN2A, indicating that the wild-type allele had been lost. In the 11 cell lines that expressed functional p16, microsatellite analysis revealed loss of heterozygosity at the markers immediately surrounding CDKN2A in five cases, and the previously characterized R24C mutation of CDK4 was identified in one of the remaining 6 lines. These data indicate that 55 of 60 (92%) melanoma cell lines demonstrated some aberration of CDKN2A or CDK4, thus suggesting that this pathway is a primary genetic target in melanoma development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline mutations within the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and one of its targets, the cyclin dependent kinase 4 (CDK4) gene, have been identified in a proportion of melanoma kindreds. In the case of CDK4, only one specific mutation, resulting in the substitution of a cysteine for an arginine at codon 24 (R24C), has been found to be associated with melanoma. We have previously reported the identification of germline CDKN2A mutations in 7/18 Australian melanoma kindreds and the absence of the R24C CDK4 mutation in 21 families lacking evidence of a CDKN2A mutation. The current study represents an expansion of these efforts and includes a total of 48 melanoma families from Australia. All of these families have now been screened for mutations within CDKN2A and CDK4, as well as for mutations within the CDKN2A homolog and 9p21 neighbor, the CDKN2B gene, and the alternative exon 1 (E1beta) of CDKN2A. Families lacking CDKN2A mutations, but positive for a polymorphism(s) within this gene, were further evaluated to determine if their disease was associated with transcriptional silencing of one CDKN2A allele. Overall, CDKN2A mutations were detected in 3/30 (10%) of the new kindreds. Two of these mutations have been observed previously: a 24 bp duplication at the 5' end of the gene and a G to C transversion in exon 2 resulting in an M531 substitution. A novel G to A transition in exon 2, resulting in a D108N substitution was also detected. Combined with our previous findings, we have now detected germline CDKN2A mutations in 10/48 (21%) of our melanoma kindreds. In none of the 'CDKN2A-negative' families was melanoma found to segregate with either an untranscribed CDKN2A allele, an R24C CDK4 mutation, a CDKN2B mutation, or an E1beta mutation. The last three observations suggest that these other cell cycle control genes (or alternative gene products) are either not involved at all, or to any great extent, in melanoma predisposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CDKN2A, the gene encoding the cell-cycle inhibitor p16CDKN2A, was first identified in 1994. Since then, somatic mutations have been observed in many cancers and germline alterations have been found in kindreds with familial atypical multiple mole/melanoma (FAMMM), also known as atypical mole syndrome. In this review we tabulate the known mutations in this gene and discuss specific aspects, particularly with respect to germline mutations and cancer predisposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CDKN2A gene encodes p16 (CDKN2A), a cell-cycle inhibitor protein which prevents inappropriate cell cycling and, hence, proliferation. Germ-line mutations in CDKN2A predispose to the familial atypical multiple-mole melanoma (FAMMM) syndrome but also have been seen in rare families in which only 1 or 2 individuals are affected by cutaneous malignant melanoma (CMM). We therefore sequenced exons 1alpha and 2 of CDKN2A using lymphocyte DNA isolated from index cases from 67 families with cancers at multiple sites, where the patterns of cancer did not resemble those attributable to known genes such as hMLH1, hMLH2, BRCA1, BRCA2, TP53 or other cancer susceptibility genes. We found one mutation, a mis-sense mutation resulting in a methionine to isoleucine change at codon 53 (M531) of exon 2. The individual tested had developed 2 CMMs but had no dysplastic nevi and lacked a family history of dysplastic nevi or CMM. Other family members had been diagnosed with oral cancer (2 persons), bladder cancer (1 person) and possibly gall-bladder cancer. While this mutation has been reported in Australian and North American melanoma kindreds, we did not observe it in 618 chromosomes from Scottish and Canadian controls. Functional studies revealed that the CDKN2A variant carrying the M531 change was unable to bind effectively to CDK4, showing that this mutation is of pathological significance. Our results have confirmed that CDKN2A mutations are not limited to FAMMM kindreds but also demonstrate that multi-site cancer families without melanoma are very unlikely to contain CDKN2A mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germ-line mutations in CDKN2A have been shown to predispose to cutaneous malignant melanoma. We have identified 2 new melanoma kindreds which carry a duplication of a 24bp repeat present in the 5' region of CDKN2A previously identified in melanoma families from Australia and the United States. This mutation has now been reported in 5 melanoma families from 3 continents: Europe, North America, and Australasia. The M53I mutation in exon 2 of CDKN2A has also been documented in 5 melanoma families from Australia and North America. The aim of this study was to determine whether the occurrence of the mutations in these families from geographically diverse populations represented mutation hotspots within CDKN2A or were due to common ancestors. Haplotypes of 11 microsatellite markers flanking CDKN2A were constructed in 5 families carrying the M53I mutation and 5 families carrying the 24bp duplication. There were some differences in the segregating haplotypes due primarily to recombinations and mutations within the short tandem-repeat markers; however, the data provide evidence to indicate that there were at least 3 independent 24bp duplication events and possibly only 1 original M53I mutation. This is the first study to date which indicates common founders in melanoma families from different continents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although germline mutations in CDKN2A are present in approximately 25% of large multicase melanoma families, germline mutations are much rarer in the smaller melanoma families that make up most individuals reporting a family history of this disease. In addition, only three families worldwide have been reported with germline mutations in a gene other than CDKN2A (i.e., CDK4). Accordingly, current genomewide scans underway at the National Human Genome Research Institute hope to reveal linkage to one or more chromosomal regions, and ultimately lead to the identification of novel genes involved in melanoma predisposition. Both CDKN2A and PTEN have been identified as genes involved in sporadic melanoma development; however, mutations are more common in cell lines than uncultured tumors. A combination of cytogenetic, molecular, and functional studies suggests that additional genes involved in melanoma development are located to chromosomal regions 1p, 6q, 7p, 11q, and possibly also 9p and 10q. With the near completion of the human genome sequencing effort, combined with the advent of high throughput mutation analyses and new techniques including cDNA and tissue microarrays, the identification and characterization of additional genes involved in melanoma pathogenesis seem likely in the near future.