887 resultados para network cost models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Business networks have been described as cooperative arrangements between independent business organisations that vary from contractual joint ventures to informal exchanges of information. This collaboration has become recognised as an innovative and efficient tool for organising interdependent activities, with benefits accruing to both firms and the local economy. For a number of years, resources have been devoted to supporting Irish networking policies. One recent example of such support is the Irish government's target of €20 million per annum for five years to support the creation of enterprise-led networks. It is imperative that a clear rationale for such interventions is established, as the opportunity cost of public funds is high. This article, therefore, develops an evaluation framework for such networking interventions. This framework will facilitate effective programme planning, implementation and evaluation. It will potentially show how a chain of cause-and-effect at both micro and macro-levels for networking interventions can be established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A city's branding is investigated using generic product and services branding models. Two generic branding models and tourism segmentation models guide an investigation into city branding 'as it should be' and 'as it is' using Birmingham, England as a case study. The unique characteristics of city brands are identified and Keller's Brand Report Card provides a theoretical framework for building a picture of the brand-building activity taking place in the city. Four themes emerge and are discussed: 1) the impact of a network on brand models developed for organisations; 2) segmentation of brand elements; 3) corporate branding; and 4) the political dimension. A conclusion is that city branding would be more effective if the systems and structures of generic branding models were adopted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the exchange rate forecasting performance of neural network models are evaluated against random walk and a range of time series models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore the parameters are chosen according to what the researcher considers to be the best. Such an approach, however, implies that the risk of making bad decisions is extremely high which could explain why in many studies neural network models do not consistently perform better than their time series counterparts. In this paper through extensive experimentation the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of performing well. Our results show that in general neural network models perform better than traditionally used time series models in forecasting exchange rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional feed forward Neural Networks have used the sum-of-squares cost function for training. A new cost function is presented here with a description length interpretation based on Rissanen's Minimum Description Length principle. It is a heuristic that has a rough interpretation as the number of data points fit by the model. Not concerned with finding optimal descriptions, the cost function prefers to form minimum descriptions in a naive way for computational convenience. The cost function is called the Naive Description Length cost function. Finding minimum description models will be shown to be closely related to the identification of clusters in the data. As a consequence the minimum of this cost function approximates the most probable mode of the data rather than the sum-of-squares cost function that approximates the mean. The new cost function is shown to provide information about the structure of the data. This is done by inspecting the dependence of the error to the amount of regularisation. This structure provides a method of selecting regularisation parameters as an alternative or supplement to Bayesian methods. The new cost function is tested on a number of multi-valued problems such as a simple inverse kinematics problem. It is also tested on a number of classification and regression problems. The mode-seeking property of this cost function is shown to improve prediction in time series problems. Description length principles are used in a similar fashion to derive a regulariser to control network complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through the application of novel signal processing techniques we are able to measure physical measurands with both high accuracy and low noise susceptibility. The first interrogation scheme is based upon a CCD spectrometer. We compare different algorithms for resolving the Bragg wavelength from a low resolution discrete representation of the reflected spectrum, and present optimal processing methods for providing a high integrity measurement from the reflection image. Our second sensing scheme uses a novel network of sensors to measure the distributive strain response of a mechanical system. Using neural network processing methods we demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor network. This network has been shown to be comparable with the performance of existing fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the thesis was to analyse several process configurations for the production of electricity from biomass. Process simulation models using AspenPlus aimed at calculating the industrial performance of power plant concepts were built, tested, and used for analysis. The criteria used in analysis were performance and cost. All of the advanced systems appear to have higher efficiencies than the commercial reference, the Rankine cycle. However, advanced systems typically have a higher cost of electricity (COE) than the Rankine power plant. High efficiencies do not reduce fuel costs enough to compensate for the high capital costs of advanced concepts. The successful reduction of capital costs would appear to be the key to the introduction of the new systems. Capital costs account for a considerable, often dominant, part of the cost of electricity in these concepts. All of the systems have higher specific investment costs than the conventional industrial alternative, i.e. the Rankine power plant; Combined beat and power production (CUP) is currently the only industrial area of application in which bio-power costs can be considerably reduced to make them competitive. Based on the results of this work, AsperiPlus is an appropriate simulation platform. How-ever, the usefulness of the models could be improved if a number of unit operations were modelled in greater detail. The dryer, gasifier, fast pyrolysis, gas engine and gas turbine models could be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite-borne scatterometers are used to measure backscattered micro-wave radiation from the ocean surface. This data may be used to infer surface wind vectors where no direct measurements exist. Inherent in this data are outliers owing to aberrations on the water surface and measurement errors within the equipment. We present two techniques for identifying outliers using neural networks; the outliers may then be removed to improve models derived from the data. Firstly the generative topographic mapping (GTM) is used to create a probability density model; data with low probability under the model may be classed as outliers. In the second part of the paper, a sensor model with input-dependent noise is used and outliers are identified based on their probability under this model. GTM was successfully modified to incorporate prior knowledge of the shape of the observation manifold; however, GTM could not learn the double skinned nature of the observation manifold. To learn this double skinned manifold necessitated the use of a sensor model which imposes strong constraints on the mapping. The results using GTM with a fixed noise level suggested the noise level may vary as a function of wind speed. This was confirmed by experiments using a sensor model with input-dependent noise, where the variation in noise is most sensitive to the wind speed input. Both models successfully identified gross outliers with the largest differences between models occurring at low wind speeds. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Great Britain and Brazil healthcare is free at the point of delivery and based study only on citizenship. However, the British NHS is fifty-five years old and has undergone extensive reforms. The Brazilian SUS is barely fifteen years old. This research investigated the middle management mediation role within hospitals comparing managerial planning and control using cost information in Great Britain and Brazil. This investigation was conducted in two stages entailing quantitative and qualitative techniques. The first stage was a survey involving managers of 26 NHS Trusts in Great Britain and 22 public hospitals in Brazil. The second stage consisted of interviews, 10 in Great Britain and 22 in Brazil, conducted in four selected hospitals, two in each country. This research builds on the literature by investigating the interaction of contingency theory and modes of governance in a cross-national study in terms of public hospitals. It further builds on the existing literature by measuring managerial dimensions related to cost information usefulness. The project unveils the practice involved in planning and control processes. It highlights important elements such as the use of predictive models and uncertainty reduction when planning. It uncovers the different mechanisms employed on control processes. It also depicts that planning and control within British hospitals are structured procedures and guided by overall goals. In contrast, planning and control processes in Brazilian hospitals are accidental, involving more ad hoc actions and a profusion of goals. The clinicians in British hospitals have been integrated into the management hierarchy. Their use of cost information in planning and control processes reflects this integration. However, in Brazil, clinicians have been shown to operate more independently and make little use of cost information but the potential signalled for cost information use is seen to be even greater than that of their British counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the inventory control of items that can be considered independent of one another. The decisions when to order and in what quantity, are the controllable or independent variables in cost expressions which are minimised. The four systems considered are referred to as (Q, R), (nQ,R,T), (M,T) and (M,R,T). Wiith ((Q,R) a fixed quantity Q is ordered each time the order cover (i.e. stock in hand plus on order ) equals or falls below R, the re-order level. With the other three systems reviews are made only at intervals of T. With (nQ,R,T) an order for nQ is placed if on review the inventory cover is less than or equal to R, where n, which is an integer, is chosen at the time so that the new order cover just exceeds R. In (M, T) each order increases the order cover to M. Fnally in (M, R, T) when on review, order cover does not exceed R, enough is ordered to increase it to M. The (Q, R) system is examined at several levels of complexity, so that the theoretical savings in inventory costs obtained with more exact models could be compared with the increases in computational costs. Since the exact model was preferable for the (Q,R) system only exact models were derived for theoretical systems for the other three. Several methods of optimization were tried, but most were found inappropriate for the exact models because of non-convergence. However one method did work for each of the exact models. Demand is considered continuous, and with one exception, the distribution assumed is the normal distribution truncated so that demand is never less than zero. Shortages are assumed to result in backorders, not lost sales. However, the shortage cost is a function of three items, one of which, the backorder cost, may be either a linear, quadratic or an exponential function of the length of time of a backorder, with or without period of grace. Lead times are assumed constant or gamma distributed. Lastly, the actual supply quantity is allowed to be distributed. All the sets of equations were programmed for a KDF 9 computer and the computed performances of the four inventory control procedures are compared under each assurnption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation is carried out into the design of a small local computer network for eventual implementation on the University of Aston campus. Microprocessors are investigated as a possible choice for use as a node controller for reasons of cost and reliability. Since the network will be local, high speed lines of megabit order are proposed. After an introduction to several well known networks, various aspects of networks are discussed including packet switching, functions of a node and host-node protocol. Chapter three develops the network philosophy with an introduction to microprocessors. Various organisations of microprocessors into multicomputer and multiprocessor systems are discussed, together with methods of achieving reliabls computing. Chapter four presents the simulation model and its implentation as a computer program. The major modelling effort is to study the behaviour of messages queueing for access to the network and the message delay experienced on the network. Use is made of spectral analysis to determine the sampling frequency while Sxponentially Weighted Noving Averages are used for data smoothing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite information, in combination with conventional point source measurements, can be a valuable source of information. This thesis is devoted to the spatial estimation of areal rainfall over a region using both the measurements from a dense and sparse network of rain-gauges and images from the meteorological satellites. A primary concern is to study the effects of such satellite assisted rainfall estimates on the performance of rainfall-runoff models. Low-cost image processing systems and peripherals are used to process and manipulate the data. Both secondary as well as primary satellite images were used for analysis. The secondary data was obtained from the in-house satellite receiver and the primary data was obtained from an outside source. Ground truth data was obtained from the local Water Authority. A number of algorithms are presented that combine the satellite and conventional data sources to produce areal rainfall estimates and the results are compared with some of the more traditional methodologies. The results indicate that the satellite cloud information is valuable in the assessment of the spatial distribution of areal rainfall, for both half-hourly as well as daily estimates of rainfall. It is also demonstrated how the performance of the simple multiple regression rainfall-runoff model is improved when satellite cloud information is used as a separate input in addition to rainfall estimates from conventional means. The use of low-cost equipment, from image processing systems to satellite imagery, makes it possible for developing countries to introduce such systems in areas where the benefits are greatest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research described here concerns the development of metrics and models to support the development of hybrid (conventional/knowledge based) integrated systems. The thesis argues from the point that, although it is well known that estimating the cost, duration and quality of information systems is a difficult task, it is far from clear what sorts of tools and techniques would adequately support a project manager in the estimation of these properties. A literature review shows that metrics (measurements) and estimating tools have been developed for conventional systems since the 1960s while there has been very little research on metrics for knowledge based systems (KBSs). Furthermore, although there are a number of theoretical problems with many of the `classic' metrics developed for conventional systems, it also appears that the tools which such metrics can be used to develop are not widely used by project managers. A survey was carried out of large UK companies which confirmed this continuing state of affairs. Before any useful tools could be developed, therefore, it was important to find out why project managers were not using these tools already. By characterising those companies that use software cost estimating (SCE) tools against those which could but do not, it was possible to recognise the involvement of the client/customer in the process of estimation. Pursuing this point, a model of the early estimating and planning stages (the EEPS model) was developed to test exactly where estimating takes place. The EEPS model suggests that estimating could take place either before a fully-developed plan has been produced, or while this plan is being produced. If it were the former, then SCE tools would be particularly useful since there is very little other data available from which to produce an estimate. A second survey, however, indicated that project managers see estimating as being essentially the latter at which point project management tools are available to support the process. It would seem, therefore, that SCE tools are not being used because project management tools are being used instead. The issue here is not with the method of developing an estimating model or tool, but; in the way in which "an estimate" is intimately tied to an understanding of what tasks are being planned. Current SCE tools are perceived by project managers as targetting the wrong point of estimation, A model (called TABATHA) is then presented which describes how an estimating tool based on an analysis of tasks would thus fit into the planning stage. The issue of whether metrics can be usefully developed for hybrid systems (which also contain KBS components) is tested by extending a number of "classic" program size and structure metrics to a KBS language, Prolog. Measurements of lines of code, Halstead's operators/operands, McCabe's cyclomatic complexity, Henry & Kafura's data flow fan-in/out and post-release reported errors were taken for a set of 80 commercially-developed LPA Prolog programs: By re~defining the metric counts for Prolog it was found that estimates of program size and error-proneness comparable to the best conventional studies are possible. This suggests that metrics can be usefully applied to KBS languages, such as Prolog and thus, the development of metncs and models to support the development of hybrid information systems is both feasible and useful.