998 resultados para molecular sentinel
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The structure and dynamics of silver ion conducting AgI-Ag2MoO4 glasses have been simulated by molecular dynamics simulation over a wide range of compositions. Formation of silver iodide like aggregates have been identified only in the AgI rich glasses. Increase in silver ion conductivity with an increase in AgI content in the glass is seen as in experiments. The dynamics of ion transport suggests that Ag+ ion transport occurs largely through paths connected by silver ion sites of mixed iodide-oxide coordination. The Van Hove correlation functions indicate that Ag+ ions prefer migration along the pathways formed with connected sites of similar coordination.
Resumo:
In order to understand the translational and rotational motion in dense molecular liquids, detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out for three different values of the aspect ratio kappa. For ellipsoids with an aspect ratio equal to 2, the product of the translational diffusion coefficient (D-T) and the average orientational correlation time of the l-th rank harmonics (tau(lR)), converges to a nearly constant value at high density. Surprisingly, this density independent value of D-T tau(lR) is within 5% of the hydrodynamic prediction with the slip boundary condition. This is despite the fact that both D-T and tau(lR) themselves change nearly by an order of magnitude in the density range considered, and the rotational correlation function itself is strongly nonexponential. For small aspect ratios (kappa less than or equal to 1.5), the rotational correlation function remains largely Gaussian even at a very large density, while for a large aspect ratio (kappa greater than or equal to 3), the transition to the nematic liquid-crystalline phase precludes the hydrodynamic regime. Thus, the rotational dynamics of ellipsoids show great sensitivity to the aspect ratio. At low density, tau(lR) goes through a minimum value, indicating the role of interactions in enhancing the rate of orientational relaxation. (C) 1997 American Institute of Physics. [S0021-9606(97)50142-5].
Resumo:
The He I photoelectron spectra of bromine, methylamine, and their complex have been obtained, and the spectra show that lone-pair orbital energy of nitrogen in methylamine is stabilized by 1.8 eV and the bromine orbital energies are destabilized by about 0.5 eV due to complexation. Ab initio calculations have been performed on the charge-transfer complexes of Br-2 with ammonia and methyl-, dimethyl-, and trimethylamines at the 3-21G*, 6-311G, and 6-311G* levels and also with effective core potentials. Calculations predict donor and acceptor orbital energy shifts upon complexation, and there is a reasonable agreement between the calculated and experimental results. Complexation energies have been corrected for BSSE. Frequency analysis has confirmed that ammonia and trimethylamine form complexes with C-3v symmetry and methylamine and dimethylamine with C-s symmetry. Calculations reveal that the lone-pair orbital of nitrogen in amine and the sigma* orbital of Br-2 are involved in the charge-transfer interaction. LANL1DZ basis seems to be consistent and give a reliable estimate of the complexation energy. The computed complexation energies, orbital energy shifts, and natural bond orbital analysis show that the strength of the complex gradually increases from ammonia to trimethylamine.
Resumo:
Antipeptide and antiidiotypic antibodies to several receptors are known to mimic their respective ligands in transducing signals on binding their receptors. In our attempts to study gonadotropin releasing hormone receptor, antipeptide and antiidiotypic monoclonal antibodies specific to the receptor were established earlier. The antipeptide mAb F1G4 was to a synthetic peptide corresponding to the extracellular domain of human GnRH receptor and the antiidiotypic mAb 4D10C1 was to the idiotype of a GnRH specific mAb. Here we report the physiological effects of the two mAbs on binding the receptor, as investigated using in vitro cultures of(a) human term placental villi and (b) rat pituitaries. The mAb 4D10C1 exerted a dose-dependent release of human chorionic gonadonopin in cultures of human term placental villi as well as luteinising and follicle stimulating hormones in cultures of rat pituitaries.
Resumo:
The molecular structure of 1,1'-bi(acenaphthen-1-ylidene)-2,2'-dione 1, a potential building-block for the synthesis of fullerene fragments, has been investigated by X-ray crystallography and semi-empirical (AM1 and PM3) calculations. There is a good agreement between the calculated and crystal structure which is essentially planar and has E-configuration. In the solid state, molecules of 1 pack in an interesting manner as corrugated sheets sustained by a network of C-H ... O hydrogen bonds and resulting in the formation of tetrameric loops. While steric factors limit the reactivity of the carbonyl groups in 1, the ene double bond of the ene-dione moiety present in it exhibits propensity toward [4 + 2]-cycloadditions to furnish novel and highly compressed polycycles 8-10.
Resumo:
Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The H-1 resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T-12 and U-15 nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T-14 stacks upon both T-12 and U-15 while T-13 partially stacks upon T-14. Very weak stacking interaction is observed between T-13 and T-12. All the individual nucleotide bases adopt 'anti' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T-13 and T-14. The stereochemistry of U-15 mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously.
Resumo:
Vibrational phase relaxation near gas-liquid and liquid-solid phase coexistence has been studied by molecular dynamics simulations of N-N stretch in N-2. Experimentally observed pronounced insensitivity of phase relaxation from the triple point to beyond the boiling point is found to originate from a competition between density relaxation and resonant-energy transfer terms. The sharp rise in relaxation rate near the critical point (CP) can be attributed at least partly to the sharp, rise in vibration-rotation coupling contribution. Substantial subquadratic quantum number dependence of overtone dephasing rate is found near the CP and in supercritical fluids. [S0031-9007 (99)09318-7].
Resumo:
Molecular dynamics (MD) simulation of lithium phosphate (Li2O-P2O5) glasses with varying Li2O content has been carried out. Two different P-O distances corresponding to phosphorus coordination with bridging oxygen (BO) and non-bridging oxygen (NBO) were identified in the simulated glasses. NBO-BO interconversion or bond switching was noted, which results in a dynamic equilibration of the tetrahedral phosphate units (P-n, n = 1,3 indicates the number of bridging oxygen atoms in the coordination of phosphorus). The NBO-BO bond switching is mildly activated with an effective activation barrier of 0.03-0.05 eV. Lithium ion jumps do not appear to be strongly coupled to bond switching. But the number of Li+ ions coordinated to an optimum number of NBOs and the number of Li+ ions jumping out of their sites appear to be correlated. Detailed analysis was made of the dynamics of P-n species and new insights have been obtained regarding ion migration in network-modified phosphate glasses.
Resumo:
Two new cadmium coordination polymers namely Cd(HAmTrz-COO)(4)(NH4+)(2)] 1; and Cd(HAmTrz)(2)I-2](n) 2; (HAmTrz-COOH = 3-amino-1,2,4-triazole-5-carboxylic acid), have been prepared based on HAmTrz-COOH as ligand. The crystal structures of 1 and 2 have been determined by single-crystal X-ray diffraction technique. In coordination-complex 1 four triazole ligands coordinate via N1 nitrogen leading to a tetrahedral geometry around cadmium ion, while in 2 the ligand prefers to coordinate to the metal in a bidentate bridging mode. The structures of both the coordination polymers can be envisaged as 3D hydrogen bonded networks. Thermogravimetric analysis shows that 2 is more stable than 1 owing to different coordination numbers of cadmium atoms. Photoluminescence properties of both the compounds have been investigated in the solid state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.
Resumo:
Several endogenous and exogenous chemical species, particularly the so-called reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), attack deoxyribonucleic acid (DNA) in biological systems producing DNA lesions which hamper normal cell functioning and cause various diseases including mutation and cancer. The guanine (G) base of DNA among all the bases is most susceptible and certain modified guanines get involved in mispairing with other bases during DNA replication. The biological system repairs the abnormal base pairs, but those that are still left cause mutation and cancer. Anti-oxidants present in biological systems can scavenge the ROS and RNOS. Thus three types of molecular events occur in biological media: (i) DNA damage, (ii) DNA repair, and (iii) prevention of DNA damage by scavenging ROS and RNOS. Quantum mechanical methods may be used to unravel molecular mechanisms of such phenomena. Some recent quantum theoretical results obtained on these problems are reviewed here.
Resumo:
A new chromium(III)-Schiff base complex, [Cr(5-chlorosalprn)(H2O)(2)]ClO4, where salprn=N,N'-propylenebis(salicylideneimine) has been prepared and characterized by electrospray ionization mass spectrometric (ESIMS) analysis and other spectroscopic techniques. Single crystal X-ray data reveal that the complex assumes a trans-diaquo structure, [Cr(C17H18Cl2N2O4)]ClO4.H2O. The effect of phenyl ring substituents on the rate of formation of [O=Cr-V Schiff base](+) has been investigated. The bimolecular rate constant for the formation of O=Cr-V species by the [Cr(Schiff base)(H2O)(2)]ClO4, where the Schiff base=salprn, (1) and 5-chlorosalprn, (2) with PhOI was compared. In the case of (2) the rate was found to be faster by an order of magnitude at pH=4 compared to (1). The introduction of a chloro-substituent on the phenyl ring not only influences the rate of redox reactivity but also the pKa values of aquo ligands of the complexes, indicating the difference in the electronic environment around the metal ion in both (1) and (2).
Resumo:
Hybrid systems are constructs of different molecular entities, natural or unnatural, to generate functional molecules in which the characteristics of various components are modulated, amplified or give rise to entirely new properties. These hybrids can be designed from carefully selected components either through domain intergration of key structural/functional features or via straightforward covalent linkages. Some of the recently reported hybrid systems based on steroid, carbohydrate, C-60-fullerene platforms, amongst others, mainly crafted with the object of enhancement of the therapeutical spectrum, will be discussed.