998 resultados para modal domain
Resumo:
The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.
Resumo:
In this paper, a new blind and readable H.264 compressed domain watermarking scheme is proposed in which the embedding/extracting is performed using the syntactic elements of the compressed bit stream. As a result, it is not necessary to fully decode a compressed video stream both in the embedding and extracting processes. The method also presents an inexpensive spatiotemporal analysis that selects the appropriate submacroblocks for embedding, increasing watermark robustness while reducing its impact on visual quality. Meanwhile, the proposed method prevents bit-rate increase and restricts it within an acceptable limit by selecting appropriate quantized residuals for watermark insertion. Regarding watermarking demands such as imperceptibility, bit-rate control, and appropriate level of security, a priority matrix is defined which can be adjusted based on the application requirements. The resulted flexibility expands the usability of the proposed method.
Resumo:
This paper is concerned with the universal (blind) image steganalysis problem and introduces a novel method to detect especially spatial domain steganographic methods. The proposed steganalyzer models linear dependencies of image rows/columns in local neighborhoods using singular value decomposition transform and employs content independency provided by a Wiener filtering process. Experimental results show that the novel method has superior performance when compared with its counterparts in terms of spatial domain steganography. Experiments also demonstrate the reasonable ability of the method to detect discrete cosine transform-based steganography as well as the perturbation quantization method.
Resumo:
Methods of measuring the acoustic behavior of tubular systems can be broadly characterized as steady state measurements, where the measured signals are analyzed in terms of infinite duration sinusoids, and reflectometry measurements which exploit causality to separate the forward and backward going waves in a duct. This paper sets out a multiple microphone reflectometry technique which performs wave separation by using time domain convolution to track the forward and backward going waves in a cylindrical source tube. The current work uses two calibration runs (one for forward going waves and one for backward going waves) to measure the time domain transfer functions for each pair of microphones. These time domain transfer functions encode the time delay, frequency dependent losses and microphone gain ratios for travel between microphones. This approach is applied to the measurement of wave separation, bore profile and input impedance. The work differs from existing frequency domain methods in that it combines the information of multiple microphones within a time domain algorithm, and differs from existing time domain methods in its inclusion of the effect of losses and gain ratios in intermicrophone transfer functions.
Resumo:
In this paper, a method for modeling diffusion caused by non-smooth boundary surfaces in simulations of room acoustics using finite difference time domain (FDTD) technique is investigated. The proposed approach adopts the well-known theory of phase grating diffusers to efficiently model sound scattering from rough surfaces. The variation of diffuser well-depths is attained by nesting allpass filters within the reflection filters from which the digital impedance filters used in the boundary implementation are obtained. The presented technique is appropriate for modeling diffusion at high frequencies caused by small surface roughness and generally diffusers that have narrow wells and infinitely thin separators. The diffusion coefficient was measured with numerical experiments for a range of fractional Brownian diffusers.
Resumo:
We propose a frequency domain adaptive algorithm for
wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the
separation ?lter is adapted from the information given by a
third microphone. Working in the frequency domain has a
series of advantages, among which are the ease of design of
the propagation ?lter and its differentiation with respect to
its parameters.
Although the adaptive algorithm was developed as a ?rst
step for the estimation of playing parameters in wind instruments it can also be used, without any modi?cations, for
other applications such as in-air direction of arrival (DOA)
estimation. Preliminary results on these applications will
also be presented.
Resumo:
This paper investigates numerical simulation of a string coupled
transversely to a resonant body. Starting from a complete nite
difference formulation, a second model is derived in which the
body is represented in modal form. The main advantage of this hybrid form is that the body model is scalable, i.e. the computational
complexity can be adjusted to the available processing power. Numerical results are calculated and discussed for simplied models
in the form of string-string coupling and string-plate coupling.
Resumo:
Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses.