954 resultados para micro shear bands
Resumo:
This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphases being stressed on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS
[1] Molecular structure and energy states | (21) | ||
[2] Some basic concepts of kinetic theory | (51) | ||
[3] Interaction of molecules with solid surface | (131) | ||
[4] Free molecular flow | (159) | ||
[5] Continuum models | (191) | ||
[6] Transitional regime | (231) | ||
[7] Direct simulation Monte-Carlo (DSMC) method | (275) | ||
[8] Microscale slow gas flows, information preservation method | (317) | ||
[App. I] Gas properties | (367) | ||
[App. II] Some integrals | (369) | ||
[App. III] Sampling from a prescribed distribution | (375) | ||
[App. IV] Program of the couette flow | (383) | ||
Subject Index | (399) |
Resumo:
The development and growth of microfluidics has stimulated interest in the behaviour of complex liquids in micro-scale geometries and provided a rich platform for rheometric investigations of non-Newtonian phenomena at small scales. Microfluidic techniques present the rheologist with new opportunities for material property measurement and this review discusses the use of microfluidic devices to measure bulk rheology in both shear and extensional flows. Capillary, stagnation and contraction flows are presented in this context and developments, limitations and future perspectives are examined. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [ Nature Mater. 2 ( 2003) 449, Intermetallics 14 ( 2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.
Resumo:
To uncover the physical origin of shear-banding instability in metallic glass (MG), a theoretical description of thermo-mechanical deformation of MG undergoing one-dimensional simple shearing is presented. The coupled thermo-mechanical model takes into account the momentum balance, the energy balance and the dynamics of free volume. The interplay between free-volume production and temperature increase being two potential causes for shear-banding instability is examined on the basis of the homogeneous solution. It is found that the free-volume production facilitates the sudden increase in the temperature before instability and vice versa. A rigorous linear perturbation analysis is used to examine the inhomogeneous deformation, during which the onset criteria and the internal length and time scales for three types of instabilities, namely free-volume softening, thermal softening and coupling softening, are clearly revealed. The shear-banding instability originating from sole free-volume softening takes place easier and faster than that due to sole thermal softening, and dominates in the coupling softening. Furthermore, the coupled thermo-mechanical shear-band analysis does show that an initial slight distribution of local free volume can incur significant strain localization, producing a shear band. During such a localization process, the local free-volume creation occurs indeed prior to the increase in local temperature, indicating that the former is the cause of shear localization, whereas the latter is its consequence. Finally, extension of the above model to include the shear-induced dilatation shows that such dilatation facilitates the shear instability in metallic glasses.
Resumo:
Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation DNS of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shearinduced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the spacetime correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.