964 resultados para mechanical methods
Resumo:
The drive to develop bone grafts for the filling of major gaps in the skeletal structure has led to a major research thrust towards developing biomaterials for bone engineering. Unfortunately, from a clinical perspective, the promise of bone tissue engineering which was so vibrant a decade ago has so far failed to deliver the anticipated results of becoming a routine therapeutic application in reconstructive surgery. Here we describe the analysis of long-term bone regeneration studies in preclinical animal models, exploiting methods of micro- and nano analysis of biodegradable composite scaffolds.
Resumo:
A paradigm shift is taking place in orthopaedic and reconstructive surgery. This transition from using medical devices and tissue grafts towards the utilization of a tissue engineering approach combines biodegradable scaffolds with cells and/or biological molecules in order to repair and/or regenerate tissues. One of the potential benefits offered by solid freeform fabrication (SFF) technologies is the ability to create such biodegradable scaffolds with highly reproducible architecture and compositional variation across the entire scaffold due to their tightly controlled computer-driven fabrication. Many of these biologically activated materials can induce bone formation at ectopic and orthotopic sites, but they have not yet gained widespread use due to several continuing limitations, including poor mechanical properties, difficulties in intraoperative handling, lack of porosity suitable for cellular and vascular infiltration, and suboptimal degradation characteristics. In this chapter, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design and fabrication in combination with growth factors for bone engineering applications. Lastly, we comment on the current and future developments in the field, such as the functionalization of novel composite scaffolds with combinations of growth factors designed to promote cell attachment, cell survival, vascular ingrowth, and osteoinduction.
Resumo:
Nutritional status in people with Parkinson’s disease (PD) has previously been assessed in a number of ways including BMI, % weight loss and the Mini-Nutritional Assessment(MNA). The symptoms of the disease and the side effects of medication used to manage them result in a number of nutrition impact symptoms that can negatively influence intake. These include chewing and swallowing difficulties, lack of appetite, nausea, and taste and smell changes, among others. Community-dwelling people with PD, aged >18 years, were recruited (n=97, 61 M, 36 F). The Patient-Generated Subjective Global Assessment(PG-SGA) and (MNA) were used to assess nutritional status. Weight, height, mid-arm circumference(MAC) and calf circumference were measured. Based on SGA, 16(16.5%) were moderately malnourished (SGA B) while none were severely malnourished (SGA C). The MNA identified 2(2.0%) as malnourished and 22(22.7%) as at risk of malnutrition. Mean MNA scores were different between the three groups,F(2,37)=7.30,p<.05 but not different between SGA B (21.0(2.9)) and MNA at risk (21.8(1.4)) participants. MAC and calf circumference were also different between the three groups,F(2,37)=5.51,p<.05 and F(2,37)=15.33,p<.05 but not between the SGA B (26.2(4.2), 33.3(2.8)) and MNA at risk (28.4(5.6), 36.4(4.7)) participants. The MNA results are similar to other PD studies using MNA where prevalence of malnutrition was between 0-2% with 20-33% at risk of malnutrition. In this population, the PG-SGA may be more sensitive to assessing malnutrition where nutrition impact symptoms influence intake. With society’s increasing body size, it might also be more appropriate as it does not rely on MAC and calf circumference measures.
Resumo:
Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG-associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser-based, marker-free and non-destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non-invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non-invasive cell and tissue state monitoring of cartilage in biomedical research. ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Resumo:
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. These standard techniques face significant disadvantages. As a result, research has focused on the development of alternative therapeutic concepts aiming to design and engineer unparalleled structural and functional bone grafts. Substantial academic and commercial interest has been sparked in bone engineering methods to stimulate, control and eventually replicate key events of bone regeneration ex vivo. Over the years, this interest has further increased and bone tissue engineering has now become a well-recognized research discipline in the area of regenerative medicine. The following chapter gives an overview of bone tissue engineering principles. It focuses on research related to the combination of scaffolds with multipotent precursor cells, such as bone marrow-derived mesenchymal stem cells or human umbilical cord perivascular cells, and the clinical applications of these tissue engineered bone constructs.
Resumo:
OBJECTIVES: To examine the effect of thermal agents on the range of movement (ROM) and mechanical properties in soft tissue and to discuss their clinical relevance. DATA SOURCES: Electronic databases (Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE) were searched from their earliest available record up to May 2011 using Medical Subjects Headings and key words. We also undertook related articles searches and read reference lists of all incoming articles. STUDY SELECTION: Studies involving human participants describing the effects of thermal interventions on ROM and/or mechanical properties in soft tissue. Two reviewers independently screened studies against eligibility criteria. DATA EXTRACTION: Data were extracted independently by 2 review authors using a customized form. Methodologic quality was also assessed by 2 authors independently, using the Cochrane risk of bias tool. DATA SYNTHESIS: Thirty-six studies, comprising a total of 1301 healthy participants, satisfied the inclusion criteria. There was a high risk of bias across all studies. Meta-analyses were not undertaken because of clinical heterogeneity; however, effect sizes were calculated. There were conflicting data on the effect of cold on joint ROM, accessory joint movement, and passive stiffness. There was limited evidence to determine whether acute cold applications enhance the effects of stretching, and further evidence is required. There was evidence that heat increases ROM, and a combination of heat and stretching is more effective than stretching alone. CONCLUSIONS: Heat is an effective adjunct to developmental and therapeutic stretching techniques and should be the treatment of choice for enhancing ROM in a clinical or sporting setting. The effects of heat or ice on other important mechanical properties (eg, passive stiffness) remain equivocal and should be the focus of future study.
Resumo:
We compare the consistency of choices in two methods to used elicit risk preferences on an aggregate as well as on an individual level. We asked subjects to choose twice from a list of nine decision between two lotteries, as introduced by Holt and Laury (2002, 2005) alternating with nine decisions using the budget approach introduced by Andreoni and Harbaugh (2009). We find that while on an aggregate(subject pool) level the results are (roughly) consistent, on an individual(within-subject) level,behavior is far from consistent. Within each method as well as across methods we observe low correlations. This again questions the reliability of experimental risk elicitation measures and the ability to use results from such methods to control for the risk aversion of subjects when explaining e�ects in other experimental games.
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
Purpose. To compare radiological records of 90 consecutive patients who underwent cemented total hip arthroplasty (THA) with or without use of the Rim Cutter to prepare the acetabulum. Methods. The acetabulum of 45 patients was prepared using the Rim Cutter, whereas the device was not used in the other 45 patients. Postoperative radiographs were evaluated using a digital templating system to measure (1) the positions of the operated hips with respect to the normal, contralateral hips (the centre of rotation of the socket, the height of the centre of rotation from the teardrop, and lateralisation of the centre of rotation from the teardrop) and (2) the uniformity and width of the cement mantle in the 3 DeLee Charnley acetabular zones, and the number of radiolucencies in these zones. Results. The study group showed improved radiological parameters and were closer to the anatomic centre of rotation both vertically (1.5 vs. 3.7 mm, p<0.001) and horizontally (1.8 vs. 4.4 mm, p<0.001) and had consistently thicker and more uniform cement mantles (p<0.001). There were 2 radiolucent lines in the control group but none in the study group. Conclusion. The Rim Cutter resulted in more accurate placement of the centre of rotation of a cemented prosthetic socket, and produced a thicker, more congruent cement mantle with fewer radiolucent lines.
Resumo:
Currently, 1.3 billion tonnes of food is lost annually due to lack of proper processing and preservation method. Drying is one of the easiest and oldest methods of food processing which can contribute to reduce that huge losses, combat hunger and promote food security. Drying increase shelf life, reduce weight and volume of food thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. However, drying is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the food material. Modelling of this process is essential to optimize the drying kinetics and improve energy efficiency of the process. Since material properties varies with moisture content, the models should not consider constant materials properties, constant diffusion .The objective of this paper is to develop a multiphysics based mathematical model to simulate coupled heat and mass transfer during convective drying of fruit considering variable material properties. This model can be used predict the temperature and moisture distribution inside the food during drying. Effect of different drying air temperature and drying air velocity on drying kinetics has been demonstrated. The governing equations of heat and mass transfer were solved with Comsol Multiphysics 4.3.