911 resultados para lower-semicontinuity
Resumo:
The distribution of calcareous nannofossils is documented for the middle Eocene through lowermost Miocene cores from Ocean Drilling Program Holes 699A and 703A in the subantarctic South Atlantic. The detailed nannofossil biostratigraphies established, in combination with published magnetostratigraphic data, have provided a fairly detailed age model for each hole. This study suggests that the middle Eocene through lowermost Miocene section from Hole 699A is virtually complete. A major hiatus has been identified in Hole 703A in the earliest Oligocene, coincident with n abrupt cooling in the Southern Ocean. Comparison of the nannofossil datum ages calibrated with magnetostratigraphy in the two holes with those from mid and southern high latitudes demonstrates synchroneity or diachroneity for the following nannofossil datums: (1) The last occurrence (LO) of Reticulofenestra bisecta is a consistent and reliable biostratigraphic marker for the Oligocene/Miocene boundary from mid- to high latitudes but not in extreme high latitudes; (2) similarly, the LO of Chiasmolithus altus has a consistent age of about 26.8 Ma in the Southern Ocean except in the extreme high latitudes where the datum appears to be substantially younger; (3) the LO of Reticulofenestra umbilica is about 32.9 Ma in the Southern Ocean; (4) the LO of Isthmolithus recurvus is reliable and consistent from mid through high latitudes and correlates with the lower part of Subchron C12R (~34.4 Ma); (5) the LO of Reticulofenestra oamaruensis has a consistent age of 36.0 Ma at all four Southern Ocean sites that have yielded a lower Oligocene magnetostratigraphy; (6) the first occurrence (FO) of R. oamaruensis is at 38.4 Ma in the Southern Ocean; and (7) the FO of I. recurvus shows some age variations from mid to high latitudes and the age range is 38.5-39.0 Ma at the five Southern Ocean sites.
Resumo:
Between 1086.6 and 1229.4 m below seafloor at Site 642 on the Outer Vøring Plateau, a series of intermediate volcanic extrusive flow units and volcaniclastic sediments was sampled. A mixed sequence of dacitic subaerial flows, andesitic basalts, intermediate volcaniclastics, subordinate mid-ocean ridge basalt, (MORB) lithologies, and intrusives was recovered, in sharp contrast to the more uniform tholeiitic T-type MORB units of the overlying upper series. This lower series of volcanics is composed of three chemically distinct groups, (B, A2, A1), rather than the two previously identified. Flows of the dacitic group (B) have trace-element and initial Sr isotope signatures which indicate that their source magma derived from the partial melting of a component of continental material in a magma chamber at a relatively high level in the crust. The relative proportions of crustal components in this complex melt are not known precisely. The most basic group (A2) probably represents a mixture of this material with MORB-type tholeiitic melt. A third group (A1), of which there was only one representative flow recovered, is chemically intermediate between the two groups above, and may suggest a repetition of, or a transition phase in, the mixing processes.
Resumo:
The composition of 31 samples of Lower Cretaceous (Valanginian to Aptian) sandstone from ODP Sites 638 through 641 was analyzed using the Gazzi-Dickinson point-counting method. The results show that the source of the Valanginian to Hauterivian sand was a continental block, dominated by granitic and/or high-grade-metamorphic rocks. Although these petrologic results do not allow discrimination between various potential continental block provinces, they suggest, in conjunction with seismic profiles and regional considerations, that the source was the Galicia margin or western Iberia. In contrast, the Barremian and Aptian sand is dominated by carbonate grains that were derived from a carbonate platform, probably on Galicia Bank.
Resumo:
Benthic foraminifers were studied in 99 samples collected from the lower 200 m of Hole 765C. The studied section ranges from the Tithonian to Aptian, and benthic foraminifers can be subdivided into five assemblages on the basis of faunal diversity and stratigraphic ranges of distinctive species. Compared with deep-water assemblages from Atlantic DSDP sites and Poland, assemblages from the Argo Abyssal Plain display a higher diversity of agglutinated forms, which comprise the autochthonous assemblages. Assemblages at the base of Hole 765C are wholly composed of agglutinated forms, reflecting deposition beneath the carbonate compensation depth (CCD). Most calcareous benthic species are found in turbidite layers, and the presence of an upper Valanginian Praedorothia praehauteriviana Assemblage may indicate deposition at or just below the CCD. The P. praehauteriviana Assemblage from Hole 765C is the temporal equivalent of similar assemblages from DSDP Holes 534A, 416A, 370, 105, and 101 in the Atlantic Ocean and Hole 306 in the Pacific Ocean. Stratigraphic ranges of cosmopolitan agglutinated species at Site 765 generally overlap with their reported ranges in the Atlantic and in the bathyal flysch sequences of the Carpathians; however, several species from Hole 765C have not been previously reported from Uppermost Jurassic to Lower Cretaceous abyssal sediments.
Resumo:
During Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). The assemblages are characterized by a scarcity or absence of Tethyan taxa. The Berriasian-early Aptian radiolarian record recovered at Site 765 is unique in its density of well-preserved samples and in its faunal contents. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers of Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant species, whereas sand faunas are dominated by non-Tethyan species that have never been reported before. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast results from a difference in provenance, rather than from hydraulic sorting. Biostratigraphic dating proved difficult principally because of the paucity or even absence of (Tethyan) species used in published zonations. In addition, published zonations are contradictory and do not reflect total ranges of species. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin reflect restricted oceanic conditions for the latest Jurassic to Barremian time period. Neither the sedimentary facies nor the faunal associations bear any resemblance to sediment and radiolarian facies observed in typical Tethyan sequences. I conclude that the Argo Basin was paleoceanographically separated from Tethys during the Late Jurassic and part of the Early Cretaceous by its position at a higher paleolatitude and by enclosing landmasses, i.e., northeastern India and the Shillong Block, which were adjacent to the northwestern Australian margin before the opening. Assemblages recovered from radiolarian sand layers are dominated by non-Tethyan species that are interpreted as circumantarctic. Their sudden appearance in the late Berriasian/early Valanginian pre-dates the oceanization of the Indo-Australian break-up (Ml 1, late Valanginian) by about 5 m.y., but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and its adjacent margins probably were submerged deeply enough to allow an intermittent "spillover" of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Circumantarctic cold-water radiolarians transported into the Argo Basin upwelled along the margin and died en masse. Concomitant winnowing by bottom currents led to their accumulation in distinct radiolarite layers. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with the two pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic and Early Cretaceous seafloor spreading. The absence of typical Tethyan radiolarian species during the late Valanginian to late Hauterivian period is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (Mil) and rapid spreading between southeast India and western Australia. The reappearance and gradual increase in abundance and diversity of Tethyan forms along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian and early Aptian and may have resulted from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
Cores from Leg 122, Sites 762 and 763, were sampled at intervals of one sample per 1.5-m section in the Lower Cretaceous sequences. More than 400 samples were studied, most of which contained dinoflagellate cysts, spores, pollen, and various types of palynoclasts. From the entire palynomorph assemblage mainly dinoflagellate cysts were studied to give a stratigraphic outline for the Lower Cretaceous. Stratigraphic units were interpreted in terms of zones in use for the Jurassic and Cretaceous of Australia. At both sites a condensed Valanginian to Aptian sequence and an expanded middle to late Berriasian sequence containing a rich microplankton assemblage were recovered. Sites 762 and 763 can be correlated with each other and with the wells Eendracht-1 and Vinck-1.