979 resultados para low involvement
Resumo:
We investigate viscous two-temperature accretion disc flows around rotating black holes. We describe the global solution of accretion flows with a sub-Keplerian angular momentum profile, by solving the underlying conservation equations including explicit cooling processes self-consistently. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. We focus on the set of solutions for sub-Eddington, Eddington and super-Eddington mass accretion rates around Schwarzschild and Kerr black holes with a Kerr parameter of 0.998. It is found that the flow, during its infall from the Keplerian to sub-Kepleria transition region to the black hole event horizon, passes through various phases of advection: the general advective paradigm to the radiatively inefficient phase, and vice versa. Hence, the flow governs a much lower electron temperature similar to 10(8)-10(9.5) K, in the range of accretion rate in Eddington units 0.01 less than or similar to (M) over dot less than or similar to 100, compared to the hot protons of temperature similar to 10(10.2)-10(11.8) K. Therefore, the solution may potentially explain the hard X-rays and gamma-rays emitted from active galactic nuclei (AGNs) and X-ray binaries. We then compare the solutions for two different regimes of viscosity. We conclude that a weakly viscous flow is expected to be cooling dominated, particularly at the inner region of the disc, compared to its highly viscous counterpart, which is radiatively inefficient. With all the solutions in hand, we finally reproduce the observed luminosities of the underfed AGNs and quasars (e. g. Sgr A*) to ultraluminous X-ray sources (e. g. SS433), at different combinations of input parameters, such as the mass accretion rate and the ratio of specific heats. The set of solutions also predicts appropriately the luminosity observed in highly luminous AGNs and ultraluminous quasars (e. g. PKS 0743-67).
Resumo:
Acute intermittent porphyria (AIP, MIM #176000) is an inherited metabolic disease due to a partial deficiency of the third enzyme, hydroxymethylbilane synthase (HMBS, EC: 4.3.1.8), in the haem biosynthesis. Neurological symptoms during an acute attack, which is the major manifestation of AIP, are variable and relatively rare, but may endanger a patient's life. In the present study, 12 Russian and two Finnish AIP patients with severe neurological manifestations during an acute attack were studied prospectively from 1995 to 2006. Autonomic neuropathy manifested as abdominal pain (88%), tachycardia (94%), hypertension (75%) and constipation (88%). The most common neurological sign was acute motor peripheral neuropathy (PNP, 81%) often associated with neuropathic sensory loss (54%) and CNS involvement (85%). Despite heterogeneity of the neurological manifestations in our patients with acute porphyria, the major pattern of PNP associated with abdominal pain, dysautonomia, CNS involvement and mild hepatopathy could be demonstrated. If more strict inclusion criteria for biochemical abnormalities (>10-fold increase in excretion of urinary PBG) are applied, neurological manifestations in an acute attack are probably more homogeneous than described previously, which suggests that some of the neurological patients described previously may not have acute porphyria but rather secondary porphyrinuria. Screening for acute porphyria using urinary PBG is useful in a selected group of neurological patients with acute PNP or encephalopathy and seizures associated with pain and dysautonomia. Clinical manifestations and the outcome of acute attacks were used as a basis for developing a 30-score scale of the severity of an acute attack. This scale can easily be used in clinical practice and to standardise the outcome of an attack. Degree of muscle weakness scored by MRC, prolonged mechanical ventilation, bulbar paralysis, impairment of consciousness and hyponatraemia were important signs of a poor prognosis. Arrhythmia was less important and autonomic dysfunction, severity of pain and mental symptoms did not affect the outcome. The delay in the diagnosis and repeated administrations of precipitating factors were the main cause of proceeding of an acute attack into pareses and severe CNS involvement and a fatal outcome in two patients. Nerve conduction studies and needle EMG were performed in eleven AIP patients during an acute attack and/or in remission. Nine patients had severe PNP and two patients had an acute encephalopathy but no clinically evident PNP. In addition to axonopathy, features suggestive of demyelination could be demonstrated in patients with severe PNP during an acute attack. PNP with a moderate muscle weakness was mainly pure axonal. Sensory involvement was common in acute PNP and could be subclinical. Decreased conduction velocities with normal amplitudes of evoked potentials during acute attacks with no clinically evident PNP indicated subclinical polyneuropathy. Reversible symmetrical lesions comparable with posterior reversible encephalopathy syndrome (PRES) were revealed in two patients' brain CT or MRI during an acute attack. In other five patients brain MRI during or soon after the symptoms was normal. The frequency of reversible brain oedema in AIP is probably under-estimated since it may be short-lasting and often indistinguishable on CT or MRI. In the present study, nine different mutations were identified in the HMBS gene in 11 unrelated Russian AIP patients from North Western Russia and their 32 relatives. AIP was diagnosed in nine symptom-free relatives. The majority of the mutations were family-specific and confirmed allelic heterogeneity also among Russian AIP patients. Three mutations, c.825+5G>C, c.825+3_825+6del and c.770T>C, were novel. Six mutations, c.77G>A (p.R26H), c.517C>T (p.R173W), c.583C>T (p.R195C), c.673C>T (p.R225X), c.739T>C (p.C247R) and c.748G>C (p.E250A), have previously been identified in AIP patients from Western and other Eastern European populations. The effects of novel mutations were studied by amplification and sequencing of the reverse-transcribed total RNA obtained from the patients' lymphoblastoid or fibroblast cell lines. The mutations c.825+5G>C and c.770T>C resulted in varyable amounts of abnormal transcripts, r.822_825del (p.C275fsX2) and [r.770u>c, r.652_771del, r.613_771del (p.L257P, p.G218_L257del, p.I205_L257del)]. All mutations demonstrated low residual activities (0.1-1.3 %) when expressed in COS-1 cells confirming the causality of the mutations and the enzymatic defect of the disease. The clinical outcome, prognosis and correlation between the HMBS genotype and phenotype were studied in 143 Finnish and Russian AIP patients with ten mutations (c.33G>T, c.97delA, InsAlu333, p.R149X, p.R167W, p.R173W, p.R173Q, p.R225G, p.R225X, c.1073delA) and more than six patients in each group. The patients were selected from the pool of 287 Finnish AIP patients presented in a Finnish Porphyria Register (1966-2003) and 23 Russian AIP patients (diagnosed 1995-2003). Patients with the p.R167W and p.R225G mutations showed lower penetrance (19% and 11%) and the recurrence rate (33% and 0%) in comparison to the patients with other mutations (range 36 to 67% and 0 to 66%, respectively), as well as milder biochemical abnormalities [urinary porphobilinogen 47±10 vs. 163±21 mol/L, p<0.001; uroporphyrin 130±40 vs. 942±183 nmol/L, p<0.001] suggesting a milder form of AIP in these patients. Erythrocyte HMBS activity did not correlate with the porphobilinogen excretion in remission or the clinical of the disease. In all AIP severity patients, normal PBG excretion predicted freedom from acute attacks. Urinary PBG excretion together with gender, age at the time of diagnosis and mutation type could predict the likelihood of acute attacks in AIP patients.
Resumo:
The purpose of the present study was to investigate the effects of low-intensity ultrasound on bioabsorbable self-reinforced poly-L-lactide (SR-PLLA) screws and on fracture healing after SR-PLLA device fixation in experimental and clinical cancellous bone fracture. In the first experimental study, the assessment of the mechanical strengths of the SR-PLLA screws was performed after 12 weeks of daily 20-minute ultrasound exposure in vitro. In the second experimental study, 32 male Wistar rats with an experimental distal femur osteotomy fixed with an SR-PLLA rod were exposed for daily low-intensity ultrasound treatment for 21 days. The effects on the healing bone were assessed. The clinical studies consist of three prospective, randomized, and placebo-controlled series of dislocated lateral malleolar fractures fixed with one SR-PLLA screw. The total number of the patients in these series was 52. Half of the patients were provided randomly with a sham ultrasound device. The patients underwent ultrasound therapy 20 minutes daily for six weeks. Radiological bone healing was assessed both by radiographs at two, six, nine, and 12 weeks and by multidetector computed tomography (MDCT) scans at two weeks, nine weeks, and 18 months. Bone mineral density was assessed by dual-energy X-ray absorptiometry (DXA). The clinical outcome was assessed by both Olerud-Molander scoring and clinical examination of the ankle. Low-intensity ultrasound had no effects on the mechanical properties and degradation behaviour of the SR-PLLA screws in vitro. There were no obvious signs of low-intensity ultrasound-induced enhancement in the bone healing in SR-PLLA-rod-fixed metaphyseal distal femur osteotomy in rats. The biocompatibility of low-intensity ultrasound treatment and SR-PLLA was found to be good. In the clinical series low-intensity ultrasound was observed to have no obvious effects on the bone mineral density of the fractured lateral malleolus. There were no obvious differences in the radiological bone healing times of the SR-PLLA-screw-fixed lateral malleolar fractures after low-intensity ultrasound treatment. Low-intensity ultrasound did not have any effects on radiological bone morphology, bone mineral density or clinical outcome 18 months after the injury. There were no obvious findings in the present study to support the hypothesis that low-intensity pulsed ultrasound enhances bone healing in SR-PLLA-rod-fixed experimental metaphyseal distal femur osteotomy in rats or in clinical SR-PLLA-screw-fixed lateral malleolar fractures. It is important to limit the conclusions of the present set of studies only to lateral malleolar fractures fixed with an SR-PLLA screw.
Resumo:
Ce0.67Cr0.33O2.11 was synthesized by hydrothermal method using diethylenetriamine as complexing agent (Chem. Mater. 2008, 20, 7268). Ce0.67Cr0.33O2.11 being the only compound likes UO2+delta to have excess oxygen, it releases a large proportion of its lattice oxygen (0.167 M [O]/mole of compound) at relatively low temperature (465 degrees C) directly and it has been utilized for generation of H-2 by thermo-splitting of water. An almost stoichiometric amount of H-2 (0.152 M/Mole of compound) is generated at much lower temperature (65 degrees C). There is an almost comparable amount of oxygen release and hydrogen generation over this material at very low temperature comparedto other CeO2-MOx (Mn, Fe, Cu, and Ni) mixed-oxide solid solutions (O-2 evolution >= 1300 degrees C and H-2 generation at 1000 degrees C). The reversible nature of oxygen release and intake of this material is attributed to its fluorite Structure and coupling between the Ce4+/Ce3+ and Cr4+/6+/Cr3+ redox couples. Compound shows reversible oxygen release and intake by H2O absorption and subsequent hydrogen release to gain parent structure and hence this material can be utilized for generation of H-2 at very low temperature by thermo-chemical splitting of water.
Resumo:
The density-matrix renormalization group (DMRG) method is used for a comparative study of low-lying excitations in trans-polyacetylene (t-PA) and transversely substituted t-PA (TS-t-PA). We have employed the Pariser-Parr-Pople model Hamiltonian which incorporates long-range electronic correlations to model these systems. We find some fundamental differences in the excited states of the t-PA and TS-t-PA. We find that the lowest two-photon allowed excited state in TS-t-PA is not made up of two triplet excitons and the gap to this state is nonzero even for undimerized chains in the thermodynamic limit. Contrary to earlier results for the Hubbard model, we find that the lowest two-photon state is always below the first optically allowed state in all the systems studied here making TS-t-PA systems only weakly fluorescent materials. Nonresonant tumbling averaged linear and third harmonic generation optic coefficients of TS-t-PA systems are also much smaller than that of t-PA.
Resumo:
In this paper, we present a low-complexity, near maximum-likelihood (ML) performance achieving detector for large MIMO systems having tens of transmit and receive antennas. Such large MIMO systems are of interest because of the high spectral efficiencies possible in such systems. The proposed detection algorithm, termed as multistage likelihood-ascent search (M-LAS) algorithm, is rooted in Hopfield neural networks, and is shown to possess excellent performance as well as complexity attributes. In terms of performance, in a 64 x 64 V-BLAST system with 4-QAM, the proposed algorithm achieves an uncoded BER of 10(-3) at an SNR of just about 1 dB away from AWGN-only SISO performance given by Q(root SNR). In terms of coded BER, with a rate-3/4 turbo code at a spectral efficiency of 96 bps/Hz the algorithm performs close to within about 4.5 dB from theoretical capacity, which is remarkable in terms of both high spectral efficiency as well as nearness to theoretical capacity. Our simulation results show that the above performance is achieved with a complexity of just O(NtNt) per symbol, where N-t and N-tau denote the number of transmit and receive antennas.
Resumo:
Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.
Resumo:
In this article, a novel pressureless solid-liquid reaction method is presented for preparation of yttrium disilicate (γ-Y2Si2O7). Single-phase γ-Y2Si2O7 powder was synthesized by calcination of SiO2 and Y2O3 powders with the addition of LiYO2 at 1400 °C for 4 h. The addition of LiYO2 significantly decreased the synthesis temperature, shortened the calcination time, and enhanced the stability of γ-Y2Si2O7. The sintering of these powders in air and O2 was studied by means of thermal mechanical analyzer. It is shown that the γ-Y2Si2O7 sintered in oxygen had a faster densification rate and a higher density than that sintered in air. Furthermore, single-phase γ-Y2Si2O7 with a density of 4.0 g/cm3 (99% of the theoretical density) was obtained by pressureless sintering at 1400 °C for 2 h in oxygen. Microstructures of the sintered samples are studied by scanning electron microscope.
Resumo:
"Extended Clifford algebras" are introduced as a means to obtain low ML decoding complexity space-time block codes. Using left regular matrix representations of two specific classes of extended Clifford algebras, two systematic algebraic constructions of full diversity Distributed Space-Time Codes (DSTCs) are provided for any power of two number of relays. The left regular matrix representation has been shown to naturally result in space-time codes meeting the additional constraints required for DSTCs. The DSTCs so constructed have the salient feature of reduced Maximum Likelihood (ML) decoding complexity. In particular, the ML decoding of these codes can be performed by applying the lattice decoder algorithm on a lattice of four times lesser dimension than what is required in general. Moreover these codes have a uniform distribution of power among the relays and in time, thus leading to a low Peak to Average Power Ratio at the relays.
Resumo:
A half-duplex constrained non-orthogonal cooperative multiple access (NCMA) protocol suitable for transmission of information from N users to a single destination in a wireless fading channel is proposed. Transmission in this protocol comprises of a broadcast phase and a cooperation phase. In the broadcast phase, each user takes turn broadcasting its data to all other users and the destination in an orthogonal fashion in time. In the cooperation phase, each user transmits a linear function of what it received from all other users as well as its own data. In contrast to the orthogonal extension of cooperative relay protocols to the cooperative multiple access channels wherein at any point of time, only one user is considered as a source and all the other users behave as relays and do not transmit their own data, the NCMA protocol relaxes the orthogonality built into the protocols and hence allows for a more spectrally efficient usage of resources. Code design criteria for achieving full diversity of N in the NCMA protocol is derived using pair wise error probability (PEP) analysis and it is shown that this can be achieved with a minimum total time duration of 2N - 1 channel uses. Explicit construction of full diversity codes is then provided for arbitrary number of users. Since the Maximum Likelihood decoding complexity grows exponentially with the number of users, the notion of g-group decodable codes is introduced for our setup and a set of necesary and sufficient conditions is also obtained.
Resumo:
People with disabilities (PWD) experience difficulties in accessing the transport system (including both infrastructure and services) to meet their needs for health care, employment and other activities. Our research shows that lack of access to the journeys needed for these purposes is a more significant barrier in low and middle income countries than in high income countries, and results in inadequate health care, rehabilitation and access to education and employment. At the same time, the existing transport system in low and middle income countries presents much higher road crash risks than in high income countries. By combining the principles and methods of Road Safety Audit and disability access, and adapting these Western approaches to a low/middle income country context, we have worked with Handicap International Cambodia to develop a Journey Access Tool (JAT) for use by disabled peoples’ organisations (DPOs), people with a disability and other key stakeholders. A key element of the approach is that it involves the participation of PWD on the journeys that they need to take, and it identifies infrastructure and service improvements that should be prioritised in order to facilitate access to these journeys. The JAT has been piloted in Cambodia with a range of PWD. This presentation will outline the design of the JAT and the results of the pilot studies. The information gained thus far strongly suggests that the JAT is a valuable and cost-effective approach that can be used by DPOs and professionals to identify barriers to access and prioritise the steps needed to address them.