967 resultados para laser ablation inductively coupled mass spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser Shock Processing is developing as a key technology for the improvement of surface mechanical and corrosion resistance properties of metals due to its ability to introduce intense compressive residual stresses fields into high elastic limit materials by means of an intense laser driven shock wave generated by laser with intensities exceeding the 109 W/cm2 threshold, pulse energies in the range of 1 Joule and interaction times in the range of several ns. However, because of the relatively difficult-to-describe physics of shock wave formation in plasma following laser-matter interaction in solid state, only limited knowledge is available in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, an account of the physical issues dominating the development of LSP processes from a moderately high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and new experimental contrast results obtained at laboratory scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser material processing is being extensively used in photovoltaic applications for both the fabrication of thin film modules and the enhancement of the crystalline silicon solar cells. The two temperature model for thermal diffusion was numerically solved in this paper. Laser pulses of 1064, 532 or 248 nm with duration of 35, 26 or 10 ns were considered as the thermal source leading to the material ablation. Considering high irradiance levels (108–109 W cm−2), a total absorption of the energy during the ablation process was assumed in the model. The materials analysed in the simulation were aluminium (Al) and silver (Ag), which are commonly used as metallic electrodes in photovoltaic devices. Moreover, thermal diffusion was also simulated for crystalline silicon (c-Si). A similar trend of temperature as a function of depth and time was found for both metals and c-Si regardless of the employed wavelength. For each material, the ablation depth dependence on laser pulse parameters was determined by means of an ablation criterion. Thus, after the laser pulse, the maximum depth for which the total energy stored in the material is equal to the vaporisation enthalpy was considered as the ablation depth. For all cases, the ablation depth increased with the laser pulse fluence and did not exhibit a clear correlation with the radiation wavelength. Finally, the experimental validation of the simulation results was carried out and the ability of the model with the initial hypothesis of total energy absorption to closely fit experimental results was confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the capability of a laser micromachining workstation for cost-effective manufacturing of a variety of microfluidic devices, including SU-8 microchannels on silicon wafers and 3D complex structures made on polyimide Kapton® or poly carbonate (PC). The workstation combines a KrF excimer laser at 248 nm and a Nd3+:YVO4 DPSS with a frequency tripled at 355 nm with a lens magnification 10X, both lasers working at a pulsed regime with nanoseconds (ns) pulse duration. Workstation also includes a high-resolution motorized XYZ-tilt axis (~ 1 um / axis) and a Through The Lens (TTL) imaging system for a high accurate positioning over a 120 x 120 mm working area. We have surveyed different fabrication techniques: direct writing lithography,mask manufacturing for contact lithography and polymer laser ablation for complex 3D devices, achieving width channels down to 13μ m on 50μ m SU-8 thickness using direct writing lithography, and width channels of 40 μm for polyimide on SiO2 plate. Finally, we have tested the use of some devices for capillary chips measuring the flow speed for liquids with different viscosities. As a result, we have characterized the presence of liquid in the channel by interferometric microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical method was developed for the simultaneous determination in poultry manure of 41 organic contaminants belonging to different chemical classes: pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and polybrominated diphenyl ethers. Poultry manure was extracted with a modified QuEChERS method, and the extracts were analyzed by isotope dilution GC/MS. Recovery of these contaminants from samples spiked at levels ranging from 25 to 100 ng/g was satisfactory for all the compounds. The developed procedure provided LODs from 0.8 to 9.6 ng/g. The analysis of poultry manure samples collected on different farms confirmed the presence of some of the studied contaminants. Pyrethroids and polycyclic aromatic hydrocarbons were the main contaminants detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoflow electrospray ionization has been used to introduce intact Escherichia coli ribosomes into the ion source of a mass spectrometer. Mass spectra of remarkable quality result from a partial, but selective, dissociation of the particles within the mass spectrometer. Peaks in the spectra have been assigned to individual ribosomal proteins and to noncovalent complexes of up to five component proteins. The pattern of dissociation correlates strongly with predicted features of ribosomal protein–protein and protein–RNA interactions. The spectra allow the dynamics and state of folding of specific proteins to be investigated in the context of the intact ribosome. This study demonstrates a potentially general strategy to probe interactions within complex biological assemblies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myosin I heavy chain kinase from Acanthamoeba castellanii is activated in vitro by autophosphorylation (8–10 mol of P per mol). The catalytically active C-terminal domain produced by trypsin cleavage of the phosphorylated kinase contains 2–3 mol of P per mol. However, the catalytic domain expressed in a baculovirus–insect cell system is fully active as isolated without autophosphorylation in vitro. We now show that the expressed catalytic domain is inactivated by incubation with acid phosphatase and regains activity upon autophosphorylation. The state of phosphorylation of all of the hydroxyamino acids in the catalytic domain were determined by mass spectrometry of unfractionated protease digests. Ser-627 was phosphorylated in the active, expressed catalytic domain, lost its phosphate when the protein was incubated with phosphatase, and was rephosphorylated when the dephosphorylated protein was incubated with ATP. No other residue was significantly phosphorylated in any of the three samples. Thus, phosphorylation of Ser-627, which is in the same position as the Ser and Thr residues that are phosphorylated in many other kinases, is necessary and sufficient for full activity of the catalytic domain. Ser-627 is also phosphorylated when full-length, native kinase is activated by autophosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstructing the history of ambient levels of metals by using tree-ring chemistry is controversial. This controversy can be resolved in part through the use of selective microanalysis of individual wood cells. Using a combination of instrumental neutron activation analysis and secondary ion mass spectrometry, we have observed systematic inhomogeneity in the abundance of toxic metals (Cr, As, Cd, and Pb) within annual growth rings of Quercus rubra (red oak) and have characterized individual xylem members responsible for introducing micrometer-scale gradients in toxic metal abundances. These gradients are useful for placing constraints on both the magnitude and the mechanism of heavy metal translocation within growing wood. It should now be possible to test, on a metal-by-metal basis, the suitability of using tree-ring chemistries for deciphering long-term records of many environmental metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A de novo sequencing program for proteins is described that uses tandem MS data from electron capture dissociation and collisionally activated dissociation of electrosprayed protein ions. Computer automation is used to convert the fragment ion mass values derived from these spectra into the most probable protein sequence, without distinguishing Leu/Ile. Minimum human input is necessary for the data reduction and interpretation. No extra chemistry is necessary to distinguish N- and C-terminal fragments in the mass spectra, as this is determined from the electron capture dissociation data. With parts-per-million mass accuracy (now available by using higher field Fourier transform MS instruments), the complete sequences of ubiquitin (8.6 kDa) and melittin (2.8 kDa) were predicted correctly by the program. The data available also provided 91% of the cytochrome c (12.4 kDa) sequence (essentially complete except for the tandem MS-resistant region K13–V20 that contains the cyclic heme). Uncorrected mass values from a 6-T instrument still gave 86% of the sequence for ubiquitin, except for distinguishing Gln/Lys. Extensive sequencing of larger proteins should be possible by applying the algorithm to pieces of ≈10-kDa size, such as products of limited proteolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerator mass spectrometry age determinations of maize cobs (Zea mays L.) from Guilá Naquitz Cave in Oaxaca, Mexico, produced dates of 5,400 carbon-14 years before the present (about 6,250 calendar years ago), making those cobs the oldest in the Americas. Macrofossils and phytoliths characteristic of wild and domesticated Zea fruits are absent from older strata from the site, although Zea pollen has previously been identified from those levels. These results, together with the modern geographical distribution of wild Zea mays, suggest that the cultural practices that led to Zea domestication probably occurred elsewhere in Mexico. Guilá Naquitz Cave has now yielded the earliest macrofossil evidence for the domestication of two major American crop plants, squash (Cucurbita pepo) and maize.