857 resultados para knowledge based reasoning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Educational computer games are examples of computer-assisted learning objects, representing an educational strategy of growing interest. Given the changes in the digital world over the last decades, students of the current generation expect technology to be used in advancing their learning requiring a need to change traditional passive learning methodologies to an active multisensory experimental learning methodology. The objective of this study was to compare a computer game-based learning method with a traditional learning method, regarding learning gains and knowledge retention, as means of teaching head and neck Anatomy and Physiology to Speech-Language and Hearing pathology undergraduate students. Methods Students were randomized to participate to one of the learning methods and the data analyst was blinded to which method of learning the students had received. Students’ prior knowledge (i.e. before undergoing the learning method), short-term knowledge retention and long-term knowledge retention (i.e. six months after undergoing the learning method) were assessed with a multiple choice questionnaire. Students’ performance was compared considering the three moments of assessment for both for the mean total score and for separated mean scores for Anatomy questions and for Physiology questions. Results Students that received the game-based method performed better in the pos-test assessment only when considering the Anatomy questions section. Students that received the traditional lecture performed better in both post-test and long-term post-test when considering the Anatomy and Physiology questions. Conclusions The game-based learning method is comparable to the traditional learning method in general and in short-term gains, while the traditional lecture still seems to be more effective to improve students’ short and long-term knowledge retention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Valid information for physicians in Switzerland concerning knowledge and continuing education in traffic medicine is not available. Also, their attitude to the legally prescribed periodic driving fitness examinations is unclear. In order to gain more information about these topics, 635 resident physicians in Southeast Switzerland were sent a questionnaire (response rate 52%). In a self-estimation, 79% of the queried physicians claimed to know the minimal medical requirements for drivers which are important in their specialty. Statistically significant differences existed between the specialties, whereby general practitioners most frequently claimed to know the minimal medical requirements (90%). It appears that the minimal medical requirements for drivers are well known to the queried physicians. Fifty-two percent of the physicians favored an expansion of continuing education in traffic medicine. Such an expansion was desired to a lesser extent by physicians without knowledge of the minimal requirements (p < 0.001). A clear majority of the medical professionals adjudged the legally prescribed periodic driving fitness examinations as being an expedient means to identify unfit drivers. A national standardized form for reporting potentially unfit drivers to the licensing authorities was supported by 68% of the responding physicians. Such a form could simplify and standardize the reports to the licensing authorities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A social Semantic Web empowers its users to have access to collective Web knowledge in a simple manner, and for that reason, controlling online privacy and reputation becomes increasingly important, and must be taken seriously. This chapter presents Fuzzy Cognitive Maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. With this in mind, a conceptual framework for Web knowledge aggregation, representation, and reasoning is introduced along with a use case, in which the importance of investigative searching for online privacy and reputation is highlighted. Thereby it is demonstrated how a user can establish a positive online presence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researchers suggest that personalization on the Semantic Web adds up to a Web 3.0 eventually. In this Web, personalized agents process and thus generate the biggest share of information rather than humans. In the sense of emergent semantics, which supplements traditional formal semantics of the Semantic Web, this is well conceivable. An emergent Semantic Web underlying fuzzy grassroots ontology can be accomplished through inducing knowledge from users' common parlance in mutual Web 2.0 interactions [1]. These ontologies can also be matched against existing Semantic Web ontologies, to create comprehensive top-level ontologies. On the Web, if augmented with information in the form of restrictions andassociated reliability (Z-numbers) [2], this collection of fuzzy ontologies constitutes an important basis for an implementation of Zadeh's restriction-centered theory of reasoning and computation (RRC) [3]. By considering real world's fuzziness, RRC differs from traditional approaches because it can handle restrictions described in natural language. A restriction is an answer to a question of the value of a variable such as the duration of an appointment. In addition to mathematically well-defined answers, RRC can likewise deal with unprecisiated answers as "about one hour." Inspired by mental functions, it constitutes an important basis to leverage present-day Web efforts to a natural Web 3.0. Based on natural language information, RRC may be accomplished with Z-number calculation to achieve a personalized Web reasoning and computation. Finally, through Web agents' understanding of natural language, they can react to humans more intuitively and thus generate and process information.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To prepare an answer to the question of how a developing country can attract FDI, this paper explored the factors and policies that may help bring FDI into a developing country by utilizing an extended version of the knowledge-capital model. With a special focus on the effects of FTAs/EPAs between market countries and developing countries, simulations with the model revealed the following: (1) Although FTA/EPA generally ends to increase FDI to a developing country, the possibility of improving welfare through increased demand for skilled and unskilled labor becomes higher as the size of the country declines; (2) Because the additional implementation of cost-saving policies to reduce firm-type/trade-link specific fixed costs ends to depreciate the price of skilled labor by saving its input, a developing country, which is extremely scarce in skilled labor, is better off avoiding the additional option; (3) If a country hopes to enjoy larger welfare gains with EPA, efforts to increase skilled labor in the country, such as investing in education, may be beneficial.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowledge management is critical for the success of virtual communities, especially in the case of distributed working groups. A representative example of this scenario is the distributed software development, where it is necessary an optimal coordination to avoid common problems such as duplicated work. In this paper the feasibility of using the workflow technology as a knowledge management system is discussed, and a practical use case is presented. This use case is an information system that has been deployed within a banking environment. It combines common workflow technology with a new conception of the interaction among participants through the extension of existing definition languages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many of the emerging telecom services make use of Outer Edge Networks, in particular Home Area Networks. The configuration and maintenance of such services may not be under full control of the telecom operator which still needs to guarantee the service quality experienced by the consumer. Diagnosing service faults in these scenarios becomes especially difficult since there may be not full visibility between different domains. This paper describes the fault diagnosis solution developed in the MAGNETO project, based on the application of Bayesian Inference to deal with the uncertainty. It also takes advantage of a distributed framework to deploy diagnosis components in the different domains and network elements involved, spanning both the telecom operator and the Outer Edge networks. In addition, MAGNETO features self-learning capabilities to automatically improve diagnosis knowledge over time and a partition mechanism that allows breaking down the overall diagnosis knowledge into smaller subsets. The MAGNETO solution has been prototyped and adapted to a particular outer edge scenario, and has been further validated on a real testbed. Evaluation of the results shows the potential of our approach to deal with fault management of outer edge networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is growing concern over the challenges for innovation in Freight Pipeline industry. Since the early works of Chesbrough a decade ago, we have learned a lot about the content, context and process of open innovation. However, much more research is needed in Freight Pipeline Industry. The reality is that few corporations have institutionalized open innovation practices in ways that have enabled substantial growth or industry leadership. Based on this, we pursue the following question: How does a firm’s integration into knowledge networks depend on its ability to manage knowledge? A competence-based model for freight pipeline organizations is analysed, this model should be understood by any organization in order to be successful in motivating professionals who carry out innovations and play a main role in collaborative knowledge creation processes. This paper aims to explain how can open innovation achieve its potential in most Freight Pipeline Industries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.