998 resultados para kinematic design
Resumo:
The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.
Resumo:
Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3, 960 Marshall and Hveem specimens were examined. The main thrust of the statistical analysis conducted in this experiment was in the calibration study and in Part I of the experiment. In the former study, the compaction procedure between the Iowa State University Lab and the Iowa Highway Commission Lab was calibrated. By an analysis of the errors associated with the measurements we were able to separate the "preparation" and "determination" errors for both laboratories as well as develop the calibration curve which describes the relationship between the compaction procedures at the two labs. In Part I, the use of a fractional factorial design in a split plot experiment in measuring the effect of several factors on asphalt concrete strength and weight was exhibited. Also, the use of half normal plotting techniques for indicating significant factors and interactions and for estimating errors in experiments with only a limited number of observations was outlined,
Resumo:
More and more, integral abutment bridges are being used in place of the more traditional bridge designs with expansion releases. In this study, states which use integral abutment bridges were surveyed to determine their current practice in the design of these structures. To study piles in integral abutment bridges, a finite element program for the soil-pile system was developed (1) with materially and geometrically nonlinear, two and three dimensional beam elements and (2) with a nonlinear, Winkler soil model with vertical, horizontal, and pile tip springs. The model was verified by comparison to several analytical and experimental examples. A simplified design model for analyzing piles in integral abutment bridges is also presented. This model grew from previous analytical models and observations of pile behavior. The design model correctly describes the essential behavioral characteristics of the pile and conservatively predicts the vertical load-carrying capacity. Analytical examples are presented to illustrate the effects of lateral displacements on the ultimate load capacity of a pile. These examples include friction and end-bearing piles; steel, concrete, and timber piles; and bending about the weak, strong, and 45° axes for H piles. The effects of cyclic loading are shown for skewed and nonskewed bridges. The results show that the capacity of friction piles is not significantly affected by lateral displacements, but the capacity of end-bearing piles is reduced. Further results show that the longitudinal expansion of the bridge can introduce a vertical preload on the pile.
Resumo:
Addendum to HR-273
Resumo:
Questionnaires were sent to transportation agencies in all 50 states in the U.S., to Puerto Rico, and all provinces in Canada asking about their experiences with uplift problems of - corrugated metal pipe (CMP). Responses were received from 52 agencies who reported 9 failures within the last 5 years. Some agencies also provided design standards for tiedowns to resist uplift. There was a wide variety in restraining forces used; for example for a pipe 6 feet in diameter, the resisting force ranged from 10 kips to 66 kips. These responses verified the earlier conclusion based on responses from Iowa county engineers that a potential uplift danger exists.when end restraint is not provided for CMP and that existing designs have an unclear theoretical or experimental basis. In an effort to develop more rational design standards, the longitudinal stiffness of three CMP ranging from 4 to 8 feet in diameter were measured in the laboratory. Because only three tests were conducted, a theoretical model to evaluate the stiffness of pipes of a variety of gages and corrugation geometries was also developed. The experimental results indicated a "stiffness" EI in the range of 9.11 x 10^5 k-in^2 to 34.43 x 10^5 k-in^2 for the three pipes with the larger diameter pipes having greater stiffness. The theoretical model developed conservatively estimates these stiffnesses.
Resumo:
This investigation is the final phase of a three part study whose overall objectives were to determine if a restraining force is required to prevent inlet uplift failures in corrugated metal pipe (CMP) installations, and to develop a procedure for calculating the required force when restraint is required. In the initial phase of the study (HR-306), the extent of the uplift problem in Iowa was determined and the forces acting on a CMP were quantified. In the second phase of the study (HR- 332), laboratory and field tests were conducted. Laboratory tests measured the longitudinal stiffness ofCMP and a full scale field test on a 3.05 m (10 ft) diameter CMP with 0.612 m (2 ft) of cover determined the soil-structure interaction in response to uplift forces. Reported herein are the tasks that were completed in the final phase of the study. In this phase, a buried 2.44 m (8 ft) CMP was tested with and without end-restraint and with various configurations of soil at the inlet end of the pipe. A total of four different soil configurations were tested; in all tests the soil cover was constant at 0.61 m (2 ft). Data from these tests were used to verify the finite element analysis model (FEA) that was developed in this phase of the research. Both experiments and analyses indicate that the primary soil contribution to uplift resistance occurs in the foreslope and that depth of soil cover does not affect the required tiedown force. Using the FEA, design charts were developed with which engineers can determine for a given situation if restraint force is required to prevent an uplift failure. If an engineer determines restraint is needed, the design charts provide the magnitude of the required force. The design charts are applicable to six gages of CMP for four flow conditions and two types of soil.
Resumo:
The effects resulting from the introduction of an oxime group in place of the distal aromatic ring of the diphenyl moiety of LT175, previously reported as a PPARα/γ dual agonist, have been investigated. This modification allowed the identification of new bioisosteric ligands with fairly good activity on PPARα and fine-tuned moderate activity on PPARγ. For the most interesting compound (S)-3, docking studies in PPARα and PPARγ provided a molecular explanation for its different behavior as full and partial agonist of the two receptor isotypes, respectively. A further investigation of this compound was carried out performing gene expression studies on HepaRG cells. The results obtained allowed to hypothesize a possible mechanism through which this ligand could be useful in the treatment of metabolic disorders. The higher induction of the expression of some genes, compared to selective agonists, seems to confirm the importance of a dual PPARα/γ activity which probably involves a synergistic effect on both receptor subtypes.
Resumo:
A mechanical gauge was developed to monitor the movement of crack or joint openings in portland cement concrete structures, in general, and portland cement concrete pavements in particular. Designed to be inexpensive and simple to operate, this gauge is capable of recording maximum, minimum, and instantaneous crack or joint openings. Specific recommendations were made for recording minimum and maximum pavement temperature over the monitoring period. The report was written as a set of guidelines for design, fabrication, installation, and operation of the gauge as well as the temperature measuring device.
Resumo:
The current 1993 American Association of State Highway and Transportation Officials (AASHTO) Pavement Design Guide is based on the empirical interpretation of the results of the 1960 AASHTO Road Test. With the release of the new Mechanistic-Empirical (M-E) Pavement Design Guide, pavement design has taken a "quantum" leap forward. In order to effectively and efficiently transition to the M-E Pavement Design Guide, state DOTs need a detailed implementation and training strategy. This document is a plan for the M-E Pavement Design Guide to be implemented in Iowa.
Resumo:
The performance of a pavement depends on the quality of its subgrade and subbase layers; these foundational layers play a key role in mitigating the effects of climate and the stresses generated by traffic. Therefore, building a stable subgrade and a properly drained subbase is vital for constructing an effective and long lasting pavement system. This manual has been developed to help Iowa highway engineers improve the design, construction, and testing of a pavement system’s subgrade and subbase layers, thereby extending pavement life. The manual synthesizes current and previous research conducted in Iowa and other states into a practical geotechnical design guide [proposed as Chapter 6 of the Statewide Urban Design and Specifications (SUDAS) Design Manual] and construction specifications (proposed as Section 2010 of the SUDAS Standard Specifications) for subgrades and subbases. Topics covered include the important characteristics of Iowa soils, the key parameters and field properties of optimum foundations, embankment construction, geotechnical treatments, drainage systems, and field testing tools, among others.
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
Trenchless technologies are methods used for the construction and rehabilitation of underground utility pipes. These methods are growing increasingly popular due to their versatility and their potential to lower project costs. However, the use of trenchless technologies in Iowa and their effects on surrounding soil and nearby structures has not been adequately documented. Surveys of and interviews with professionals working in trenchless-related industries in Iowa were conducted, and the results were analyzed and compared to survey results from the United States as a whole. The surveys focused on method familiarity, pavement distress observed, reliability of trenchless methods, and future improvements. Results indicate that the frequency of pavement distress or other trenchless-related issues are an ongoing problem in the industry. Inadequate soil information and quality control/quality assurance (QC/QA) are partially to blame. Fieldwork involving the observation of trenchless construction projects was undertaken with the purpose of documenting current practices and applications of trenchless technology in the United States and Iowa. Field tests were performed in which push-in pressure cells were used to measure the soil stresses induced by trenchless construction methods. A program of laboratory soil testing was carried out in conjunction with the field testing. Soil testing showed that the installations were made in sandy clay or well-graded sand with silt and gravel. Pipes were installed primarily using horizontal directional drilling with pipe diameters from 3 to 12 inches. Pressure cell monitoring was conducted during the following construction phases: pilot bore, pre-reaming, and combined pipe pulling and reaming. The greatest increase in lateral earth pressure was 5.6 psi and was detected 2.1 feet from the centerline of the bore during a pilot hole operation in sandy lean clay. Measurements from 1.0 to 2.5 psi were common. Comparisons were made between field measurements and analytical and finite element calculation methods.
Resumo:
Among the variety of road users and vehicle types that travel on U.S. public roadways, slow moving vehicles (SMVs) present unique safety and operations issues. SMVs include vehicles that do not maintain a constant speed of 25 mph, such as large farm equipment, construction vehicles, or horse-drawn buggies. Though the number of crashes involving SMVs is relatively small, SMV crashes tend to be severe. Additionally, SMVs can be encountered regularly on non-Interstate/non-expressway public roadways, but motorists may not be accustomed to these vehicles. This project was designed to improve transportation safety for SMVs on Iowa’s public roadway system. This report includes a literature review that shows various SMV statistics and laws across the United States, a crash study based on three years of Iowa SMV crash data, and recommendations from the SMV community.