823 resultados para isophane insulin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous intraperitoneal insulin infusion (CIPII) with the DiaPort system using regular insulin was compared to continuous subcutaneous insulin infusion (CSII) using insulin Lispro, to investigate the frequency of hypoglycemia, blood glucose control, quality of life, and safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two trisaccharides (2 and 3) related to related to the glycone part of Phanoside, an insulin release stimulator have been synthesized in excellent yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decision support system based on a neural network approach is proposed to advise on insulin regime and dose adjustment for type 1 diabetes patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is unclear whether regular exercise alone (no caloric restriction) is a useful strategy to reduce adiposity and obesity-related metabolic risk factors in obese girls. We examined the effects of aerobic (AE) vs. resistance exercise (RE) alone on visceral adipose tissue (VAT), intrahepatic lipid, and insulin sensitivity in obese girls. Forty-four obese adolescent girls (BMI ≥95th percentile, 12-18 yr) with abdominal obesity (waist circumference 106.5 ± 11.1 cm) were randomized to 3 mo of 180 min/wk AE (n = 16) or RE (n = 16) or a nonexercising control group (n = 12). Total fat and VAT were assessed by MRI and intrahepatic lipid by proton magnetic resonance spectroscopy. Intermuscular AT (IMAT) was measured by CT. Insulin sensitivity was evaluated by a 3-h hyperinsulinemic (80 mU·m(2)·min(-1)) euglycemic clamp. Compared with controls (0.13 ± 1.10 kg), body weight did not change (P > 0.1) in the AE (-1.31 ± 1.43 kg) and RE (-0.31 ± 1.38 kg) groups. Despite the absence of weight loss, total body fat (%) and IMAT decreased (P < 0.05) in both exercise groups compared with control. Compared with control, significant (P < 0.05) reductions in VAT (Δ-15.68 ± 7.64 cm(2)) and intrahepatic lipid (Δ-1.70 ± 0.74%) and improvement in insulin sensitivity (Δ0.92 ± 0.27 mg·kg(-1)·min(-1) per μU/ml) were observed in the AE group but not the RE group. Improvements in insulin sensitivity in the AE group were associated with the reductions in total AT mass (r = -0.65, P = 0.02). In obese adolescent girls, AE but not RE is effective in reducing liver fat and visceral adiposity and improving insulin sensitivity independent of weight loss or calorie restriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Epidemiologic and experimental data have suggested that chlorogenic acid, which is a polyphenol contained in green coffee beans, prevents diet-induced hepatic steatosis and insulin resistance. OBJECTIVE We assessed whether the consumption of chlorogenic acid-rich coffee attenuates the effects of short-term fructose overfeeding, dietary conditions known to increase intrahepatocellular lipids (IHCLs), and blood triglyceride concentrations and to decrease hepatic insulin sensitivity in healthy humans. DESIGN Effects of 3 different coffees were assessed in 10 healthy volunteers in a randomized, controlled, crossover trial. IHCLs, hepatic glucose production (HGP) (by 6,6-d2 glucose dilution), and fasting lipid oxidation were measured after 14 d of consumption of caffeinated coffee high in chlorogenic acid (C-HCA), decaffeinated coffee high in chlorogenic acid, or decaffeinated coffee with regular amounts of chlorogenic acid (D-RCA); during the last 6 d of the study, the weight-maintenance diet of subjects was supplemented with 4 g fructose · kg(-1) · d(-1) (total energy intake ± SD: 143 ± 1% of weight-maintenance requirements). All participants were also studied without coffee supplementation, either with 4 g fructose · kg(-1) · d(-1) (high fructose only) or without high fructose (control). RESULTS Compared with the control diet, the high-fructose diet significantly increased IHCLs by 102 ± 36% and HGP by 16 ± 3% and decreased fasting lipid oxidation by 100 ± 29% (all P < 0.05). All 3 coffees significantly decreased HGP. Fasting lipid oxidation increased with C-HCA and D-RCA (P < 0.05). None of the 3 coffees significantly altered IHCLs. CONCLUSIONS Coffee consumption attenuates hepatic insulin resistance but not the increase of IHCLs induced by fructose overfeeding. This effect does not appear to be mediated by differences in the caffeine or chlorogenic acid content. This trial was registered at clinicaltrials.gov as NCT00827450.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS The aims of this study were to analyse the changes of serum leptin in newly diagnosed children and adolescents with Type I (insulin-dependent) diabetes mellitus after insulin treatment and to examine the possible impact of ketoacidosis on these changes. METHODS Baseline serum leptin concentrations were measured in 28 newly diagnosed Type I diabetic patients [age 8.75 +/- 4.05 years (means +/- SD); BMI 15.79 +/- 2.47 kg/m(2); HbA(1 c) 11.3 +/- 1.9 %] with (n = 18) and without (n = 10) ketoacidosis before commencement of insulin treatment, at the time of diagnosis. Thereafter, during a 4-day course of continuous intravenous insulin injection to gain and maintain euglycaemia, serum leptin concentrations were assessed. RESULTS Baseline serum leptin concentrations, adjusted to age, BMI, sex and pubertal stage, differed among these patients. There was, however, an increase of leptin in all subjects from 1.37 +/- 0.56 ng/ml (mean +/- SD) up to 2.97 +/- 1.52 ng/ml by 117 % (p < 0.0001) after insulin therapy. On average, peak serum leptin concentration was obtained after 42 h of insulin treatment. Further, there was no difference in the mean increase of serum leptin concentrations in the two groups, namely with and without ketoadicosis, of insulin-dependent diabetic children and adolescents. In addition, there was no correlation between serum leptin concentrations and correction of ketoacidosis during insulin treatment. CONCLUSIONS/INTERPRETATION Insulin increases serum leptin, within 1 day, in children and adolescents with newly diagnosed Type I diabetes. Ketoacidosis does not influence this interaction between insulin and leptin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Bariatric surgery reverses obesity-related comorbidities, including type 2 diabetes mellitus. Several studies have already described differences in anthropometrics and body composition in patients undergoing Roux-en-Y gastric bypass compared with laparoscopic adjustable gastric banding, but the role of adipokines in the outcomes after the different types of surgery is not known. Differences in weight loss and reversal of insulin resistance exist between the 2 groups and correlate with changes in adipokines. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7 kg/m(2)) underwent 2 types of laparoscopic weight loss surgery (Roux-en-Y gastric bypass=10, adjustable gastric banding=5). Weight, waist and hip circumference, body composition, plasma metabolic markers, and lipids were measured at set intervals during a 24-month period after surgery. RESULTS: At 24 months, patients who underwent Roux-en-Y were overweight (BMI 29.7 kg/m(2)), whereas patients who underwent gastric banding remained obese (BMI 36.3 kg/m(2)). Patients who underwent Roux-en-Y lost significantly more fat mass than patients who underwent gastric banding (mean difference 16.8 kg, P<.05). Likewise, leptin levels were lower in the patients who underwent Roux-en-Y (P=.003), and levels correlated with weight loss, loss of fat mass, insulin levels, and Homeostasis Model of Assessment 2. Adiponectin correlated with insulin levels and Homeostasis Model of Assessment 2 (r=-0.653, P=.04 and r=-0.674, P=.032, respectively) in the patients who underwent Roux-en-Y at 24 months. CONCLUSION: After 2 years, weight loss and normalization of metabolic parameters were less pronounced in patients who underwent gastric banding compared with patients who underwent Roux-en-Y gastric bypass. Our findings require confirmation in a prospective randomized trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of insulin with bovine aorta endothelial (BAE) cells has been studied to determine the effect of insulin on endothelial cells, and investigate the function of the insulin receptor in this cell type. BAE cell insulin receptor is similiar to insulin receptor in other cell types in the time to attain equilibrium binding, its physical properties in a solubilized assay system and affinity for insulin in the low nanomolar range. However, BAE cell insulin receptor has unusual properties in its interaction with insulin at 4$\sp\circ$C that include: (1) the inability to completely dissociate prebound $\sp{125}$I-insulin by dilution with excess insulin or acid rinse treatment, indicating that binding is not completely reversible (2) the inability to remove prebound insulin with trypsin and other proteases (3) the implication of disulfide complex formation during binding (4) the inability of pretreatment with trypsin to lower cell surface binding capacity and (5) the suppression of insulin binding by bacitracin. Interactions of insulin with the receptor at 37$\sp\circ$C showed that (1) BAE cells degrade insulin, but not as extensively as other cell types, and (2) an unusual biphasic interaction of insulin with the BAE cells is observed which is indicative of some regulatory mechanism which modulates binding affinity. Functional characterization of the BAE cell insulin receptor revealed that insulin-induced downregulation and phosphorylation of the receptor was observed, and the extent of these processes were comparable to that demonstrated in non-endothelial cell types. However, in contrast to other cell types, insulin did not stimulate deoxyglucose uptake in BAE cells. We were unable to confirm the receptor-mediated transport of insulin by the receptor across the endothelial cell monolayer as reported by a previous investigator. We could not demonstrate a role for the receptor to promote acute intracellular accumulation of insulin as postulated by several investigators. Thus, while BAE cell insulin receptor has many properties that are similiar to those in other cell types, it is distinctly different in its nondissociable binding at 4$\sp\circ$C, its interaction with insulin at 37$\sp\circ$C, and its functional role in the BAE cell. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin receptor transduces insulin's biological signal through the tyrosine kinase present in the receptor's B subunit. The activated insulin receptor kinase then phosphorylates a series of intracellular substrate including insulin receptor substrate 1 (IRS-1), which has been shown to be the pivotal substrate for insulin receptor signal transduction. The phosphorylated tyrosine residues in IRS-1 can bind and activate the downstream effectors, many of which are SH2 domain containing proteins such as phosphotidylinositol 3-kinase, growth factor binding protein 2, and SH2 phosphotyrosine phosphatase 2. Phosphorylated synthetic IRS-1 peptides with the corresponding sequences of the IRS-1 have been shown to associate and activate their respective SH2 domain containing proteins. Another important event happening during insulin binding with the insulin receptor is that the insulin receptor rapidly undergoes internalization. However, the insulin receptor signalling and the receptor endocytosis have been studied as two independent processes. The hypothesis of the present thesis is that the insulin receptor endocytosis is involved in insulin receptor signalling and signal termination. The results of the present investigation demonstrate that insulin receptors in the earliest stage of endocytosis contain significantly greater kinase activity towards IRS-1 peptides than the receptors localized at the plasma membrane, indicating that they are potentially more capable of transducing signals. On the other hand, insulin receptors in the middle and late stage of endocytosis lose their kinase activity, suggesting that insulin receptor kinase activity inactivation and signal termination might take place in the late phase of the insulin receptor internalization. In addition, this study also found that the increased insulin receptor kinase activity in the endosomes is related to the tyrosyl phosphorylation of the specific domains of the receptor's $\beta$ subunit. ^