990 resultados para ion source
Resumo:
Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets were performed on a series of ion-molecule and ion pair-molecule complexes for the H2O + LiCN system. Stabilisation energies (with counter-poise corrections), geometrical parameters, internal force constants and harmonic vibrational frequencies were evaluated for 16 structures of interest. Although the interaction energies are smaller, the geometries and relative stabilities of the monohydrated contact ion pair are reminiscent of those computed for the complexes of the individual ions. Thus, interaction of the oxygen lone pair with lithium leads to a highly stabilised C2v structure, while the coordination of water to the cyanide ion involves a slightly non-linear hydrogen bond. Symmetrical bifurcated structures are computed to be saddle points on the potential energy surface, and to have an imaginary frequency for the rocking mode of the water molecule. On optimisation the geometries of the solvent shared ion pair structures (e.g. Li+cdots, three dots, centered OH2cdots, three dots, centered CN−) revealed a proton transfer from the water molecule leading to hydrogen bonded forms such as Li-O-Hcdots, three dots, centered HCN. The variation in the force constants and harmonic frequencies in the various structures considered are discussed in terms of ion-molecular and ion pair-molecule interactions.
Resumo:
Solid solutions of the formula, A2–xLa2Ti3–xNbxO10(A = K, Rb), exist for the range 0[less-than-or-eq]x[less-than-or-eq]1.0, bridging n= 3 members of the Ruddlesden–Popper series (A2La2Ti3O10) and the Dion–Jacobson series (ALa2Ti2NbO10). For 0[less-than-or-eq]x[less-than-or-eq]0.75, the phases possess body-centred structures characteristic of the Ruddlesden–Popper phases, while the x= 1 members are isostructural with KCa2Nb3O10(A = K) and CsCa2Nb3O10(A = Rb). Protonated derivatives, H2–xLa2Ti3–xNbxO10, which are prepared by ion exchange, retain the structural difference of the parent phases. A difference in the Brønsted acidity of the protonated derivatives revealed by intercalation experiments with organic bases seems to be related to this structural difference.
Effects of thermal annealing on the properties of zirconia films prepared by ion-assisted deposition
Resumo:
The effect of thermal annealing in the range 300–800 °C on the properties of zirconia films prepared by ion assisted deposition was studied. It was found that at low temperature the cubic phase is formed. This phase is stable up to 700 °C. All the films exhibit a monophasic monoclinic structure at 800 °C. The stress, estimated from X-ray patterns, shows a transition from tensile to compressive with increasing ion fluence. The refractive index and extinction coefficient do not seem to change appreciably up to 700 °C, showing a marked degradation thereafter. Single step annealing to the highest temperature was found to result in better stability than multistep annealing.
Resumo:
Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.
Resumo:
A microscopic theory of the statics and the dynamics of solvation of an ion in a binary dipolar liquid is presented. The theory properly includes the different intermolecular correlations that are present in a binary mixture. As a result, the theory can explain several important aspects of both the statics and the dynamics of solvation that are observed in experiments. It provides a microscopic explanation of the preferential solvation of the more polar species by the solute ion. The dynamics of solvation is predicted to be highly non-exponential, in general. The average relaxation time is found to change nonlinearly with the composition of the mixture. These predictions are in qualitative agreement with the experimental results.
Resumo:
A recently developed microscopic theory of solvation dynamics in real dipolar liquids is used to calculate, for the first time, the solvation time correlation function in liquid acetonitrile, water and methanol. The calculated results are in excellent agreement with known experimental and computer simulation studies.
Resumo:
Thin films of titanium dioxide have been deposited using ion assisted deposition with oxygen ions in the energy range 100�500 eV and current densities up to 100 ?A/cm2. It has been observed that the refractive index of the films increases up to 300 eV and the extinction coefficient increased only nominally up to 300 eV. Optical band gap calculations have shown a strong dependence of the gap on the energy of incident ions. Beyond a critical energy and current density of the ions the refractive index and extinction coefficient of the films start deteriorating. It has also been found that beyond the critical values the optical band gap value decreases. The maximum refractive index obtained was 2.49 at an energy of 300 eV and 50 ?A/cm2 current density. Post?deposition annealing of the films at 500?°C resulted in a slight increase in refractive index without affecting the extinction coefficient. X?ray diffraction studies revealed a monophasic anatase structure in these films. ?
Resumo:
We calculate the thermal photon transverse momentum spectra and elliptic flow in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at RHIC and in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC, using an ideal-hydrodynamical framework which is constrained by the measured hadron spectra at RHIC and LHC. The sensitivity of the results to the QCD-matter equation of state and to the photon emission rates is studied, and the photon $v_2$ is discussed in the light of the photonic $p_T$ spectrum measured by the PHENIX Collaboration. In particular, we make a prediction for the thermal photon $p_T$ spectra and elliptic flow for the current LHC Pb+Pb collisions.
Resumo:
The PbS quantum dots synthesized in PVA are used to investigate their photoluminescence (PL) response to various ions such as Zn, Cd, Hg, Ag, Cu, Fe, Mn, Co, Cr and Ni ions. The enhancement in the photoluminescence intensity is observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations is quite high, approximately an order of magnitude higher than Zn and Cd. It is interesting to observe that the change in Pb and S molar ratio has profound effect on the selectivity of these ions. The samples prepared under excess of S are quite effective compared to Pb. Indeed, the later one has hardly any effect on the photoluminescence response. These results also indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu, Fe and Co quenches the photoluminescence. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa), which is an interesting feature for metal ion detectivity.
Resumo:
Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A cross-linked polymer-gel soft matter electrolyte with superior electrochemical, thermal and mechanical properties obtained from free radical polymerization of vinyl monomers in a semi-solid organic nonionic plastic crystalline electrolyte for application in rechargeable lithium-ion batteries is discussed here.
Resumo:
Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solvent-shared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.