953 resultados para insect population dynamics
Resumo:
Detecting and quantifying threats and researching and implementing management actions are key to improving the conservation status of endangered species. Bibliometric analysis can constitute a useful tool for the evaluation of such questions from a long-term perspective. Taking as a case study the Cinereous Vulture Aegypius monachus in Spain, we tested relationships between population dynamics, research efforts, existing threats and conservation milestones. The population growth of the species (from 206 pairs in 1976 to 2,068 in 2011) was parallelled by the increase in the total number of publications, the number of articles in SCI journals and the number of published works dealing with aspects of conservation, threats and management. These results are discussed in terms of cause-effect relationships taking into account that the influence of other non-mutually exclusive factors could also probably explain such associations. Similarly, we analysed the trend of the Cinereous Vulture breeding population with respect to different threats and indices of food availability, obtaining a positive correlation with the increase in big-game hunting bags in Spain. With respect to conservation milestones, we concluded that the current situation is positive in terms of the protection of the species and its habitat, with the situation in relation to food availability being unclear. Finally, we reviewed the main conservation actions that have been taken for the species in Spain and how these have been progressively modified based on new scientific and technical evidence, as an example of adaptive management applied to conservation.
Resumo:
In Nepal, changing demographic patterns are leading to changes in land use. The high level of outmigration of men in the hills of Kaski District, Western Development Region of Nepal, is affecting the household structure but also land management. Land is often abandoned, as the burden on those left behind is too high. How do these developments affect the state of the land in terms of land degradation? To find out, we studied land degradation, land abandonment caused by outmigration, and existing sustainable land management practices in a subwatershed in Kaski District. Mapping was done using the methodology of the World Overview of Conservation Approaches and Technologies (WOCAT). While previous studies expected land abandonment to exacerbate slope erosion, we demonstrate in this paper that it is in fact leading to an increase in vegetation cover due to favourable conditions for ecosystem recovery. However, negative impacts are several, including the increase of invasive species harmful to livestock and a decline in soil fertility. Traditional land management practices such as terraces and forest management exist. To date, however, these measures fail to take account of the changing population dynamics in the region, making the question of how migration and land degradation are linked worth revisiting.
Resumo:
Australia is unique as a populated continent in that canine rabies is exotic, with only one likely incursion in 1867. This is despite the presence of a widespread free-ranging dog population, which includes the naturalized dingo, feral domestic dogs and dingo-dog cross-breeds. To Australia's immediate north, rabies has recently spread within the Indonesian archipelago, with outbreaks occurring in historically free islands to the east including Bali, Flores, Ambon and the Tanimbar Islands. Australia depends on strict quarantine protocols to prevent importation of a rabid animal, but the risk of illegal animal movements by fishing and recreational vessels circumventing quarantine remains. Predicting where rabies will enter Australia is important, but understanding dog population dynamics and interactions, including contact rates in and around human populations, is essential for rabies preparedness. The interactions among and between Australia's large populations of wild, free-roaming and restrained domestic dogs require quantification for rabies incursions to be detected and controlled. The imminent risk of rabies breaching Australian borders makes the development of disease spread models that will assist in the deployment of cost-effective surveillance, improve preventive strategies and guide disease management protocols vitally important. Here, we critically review Australia's preparedness for rabies, discuss prevailing assumptions and models, identify knowledge deficits in free-roaming dog ecology relating to rabies maintenance and speculate on the likely consequences of endemic rabies for Australia.
Resumo:
To assess the presence or absence of lags in biotic responses to rapid climatic changes, we: (1) assume that the δ18O in biogenically precipitated carbonates record global or hemispheric climatic change at the beginning and at the end of the Younger Dryas without any lag at our two study sites of Gerzensee and Leysin, Switzerland; (2) derive a time scale by correlating the δ18O record from these two sites with the δ18O record of the GRIP ice core; (3) measure δ18O records in ostracods and molluscs to check the record in the bulk samples and to detect possible hydrological changes; (4) analyse at Gerzensee and Leysin as well as at two additional sites (that lack carbonates and hence a δ18O record) pollen, plant macrofossils, chironomids, beetles and other insects, and Cladocera; (5) estimate our sampling resolution using the GRIP time scale for the isotope stratigraphies and the biostratigraphies; and (6) summarise the major patterns of compositional change in the biostratigraphies by principal component analysis or correspondence analysis. We conclude that, at the major climatic shifts at the beginning and end of the Younger Dryas, hardly any biotic lags occur (within the sampling resolution of 8–30 years) and that upland vegetation responded as fast as aquatic invertebrates. We suggest that the minor climatic changes associated with the Gerzensee and Preboreal oscillations were weakly recorded in the biostratigraphies at the lowland site, but were more distinct at higher altitudes. Individualistic responses of plant and animal species to climatic change may reflect processes in individuals (e.g. productivity and phenology), in populations (e.g. population dynamics), in spatial distributions (e.g. migrations), and in ecosystems (e.g. trophic state). We suggest that biotic responses may be telescoped together into relatively short periods (50 to 150 years), perhaps disrupting functional interactions among species and thus destabilising ecosystems.
Resumo:
Conspecific effects of neighbours on small-tree survival may have a role in tree population dynamics and community composition of tropical forests. This notion was tested with data from two 4-ha plots in lowland forest at Danum, Sabah (Borneo), for a 21-year interval (censuses at 1986, 1996, 2001, 2007). Species with ≥45 focal trees 10 to <100 cm stem girth per plot in 1986 were selected. Logistic regressions fitted mean focal tree size and mean inverse-distance-weighted basal area abundance of neighbours (within 20 m), for the periods over which each focus tree was alive. Coefficients of variation of neighbourhood basal area abundance, both spatially and temporally, quantified the changing environment of each focus tree. Fits were critically and individually evaluated, with corrections for spatial autocorrelation. Conspecific effects at Danum was generally very weak or non-existent: species’ mortality rates varied also across plots. The main reasons appear to be that (1) species were not dense enough to interact despite frequent although weak spatial aggregation, and their neighbourhoods were highly differing in species composition; and (2) these neighbourhoods were highly variable temporally, meaning that focus trees experienced stochastically fluctuating neighbourhood environments. Only one species, Dimorphocalyx muricatus, showed strong conspecific effects (varying between plots) which can be explained by its distinct ecology. This understorey species is highly aggregated on ridges and is drought-tolerant. That this functionally and habitat-specialized species, has implied intraspecific density-dependent feedback in its dynamics is a remarkable indication of the overall processes maintaining stability of the Danum forest.
Resumo:
La producción de Solanum tuberosum L., Lycopersicum esculentum Mill. y Physalis ixocarpa Brot. (Solanales: Solanaceae) ha sufrido fuertes pérdidas económicas por la presencia de Bactericera cockerelli Sulc. (Hemiptera: Triozidae) al asociarse con las enfermedades punta morada o “zebra chip", además de ser el transmisor de Candidatus Liberibacter solanacearum. Las alternativas de control utilizadas han carecido de eficacia por desconocer la distribución espacial del insecto dentro de la parcela. Conocer dicho comportamiento permitiría focalizar las alternativas de control, haciéndolas más eficaces. Este trabajo tuvo por objetivo modelizar la distribución espacial de los estadíos de huevo, ninfa y adulto de B. cockerelli obtenidos en muestreos por transectos en un cultivo de papa, utilizando herramientas geoestadísticas. Los resultados indican que la distribución espacial de las poblaciones de huevos, ninfas y adultos de B. cockerelli fue de tipo agregada en cada fecha de muestreo. La validación cruzada de los semivariogramas obtenidos corrobora la distribución agregada en las poblaciones de B. cockerelli. Por su parte, los mapas elaborados permiten observar la estructura agregada de las poblaciones del insecto, permitiendo identificar áreas infestadas y áreas libres. Se encontró estabilidad espacio temporal para los tres estadios del insecto.
Resumo:
Micropaleontologists have traditionally recognized the mid-Miocene Fohsella lineage as a flagship for phyletic gradualism within the planktic foraminifera. However, study of a deep-sea record from the western equatorial Pacific (ODP Site 806) reveals that coiling ratios within this clade suddenly (<5 kyr) shift after a prolonged, ancestral state of near randomness (~50%) to a transient phase (13.42-13.43 Ma) of dextral dominance (~75%) immediately following the first common occurrence of keeled fohsellids. This brief period of dextral dominance was abruptly (<5 kyr) succeeded by an irreversible change to sinistral dominance (~96%). Fohsellid abundances decline markedly through the interval in which the sinistral preference is established. The shift to sinistrality (13.42 Ma) predated the deepening of fohsellid depth ecology by ~240-488 kyr, indicating that these two events were unrelated. This view is supported by a lack of delta 18O evidence for depth-habitat differences between the two chiral forms, which refutes the notion that sinistral fohsellids were "pre-adapted" for ensuing hydrographic change because they occupied a deeper depth habitat than their dextral counterparts. Planktic foraminiferal assemblages become strongly oligotrophic in character through the interval in which the fohsellid delta 18O increase is recorded, indicating that the migration to deeper depths was fostered by an expansion of the mixed layer in the western equatorial Pacific. Salient aspects of this brief, but conspicuous faunal change are a marked increase in the abundance of symbiont-bearing globigerinoidids, a concomitant collapse of local Jenkinsella mayeri/siakensis populations, and reduced fohsellid abundances. The rapid and permanent nature of the Fohsella sinistral shift provides a distinct, unequivocal datum that may prove useful for correlating mid-Miocene sections throughout the Caribbean Sea and tropical regions in the western sectors of the Pacific and Atlantic. The coiling ratio changes that occurred during the evolution of the Fohsella chronocline probably reflect changing population dynamics between cryptic genotypes with different coiling preferences.
Resumo:
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. During R.R.S. Charles Darwin Cruises 145 and 146 (12 March to May 28 2003), 11 multicores were taken on the continental margin off Karachi, Pakistan. Two transects were sampled, constituting a composite bathymetric profile from 136 m (above the OMZ in spring 2003) down to 1870 m water depth. Cores (surface area 25.5 cm2) were processed as follows: for stations situated above, and in the upper part of the OMZ, sediment slices were taken for the 0-0.5 and 0.5-1 cm intervals, and then in 1 cm intervals down to 10 cm. For the lower part of the OMZ, the second centimetre was also sliced in half-centimetre intervals. Each sample was stored in 10 % borax-buffered formalin for further processing. Onshore, the samples were wet sieved over 63 µm, 150 µm and 300 µm sieves and the residues were stained for one week in ethanol with Rose Bengal. After staining, the residue was washed again. The stained faunas were picked wet in three granulometric fractions (63-150 µm, 150-300 µm and >300 µm), down to 10 cm depth. To gain more insight into the population dynamics we investigated the dead (unstained) foraminifera in the 2-3 cm level for the fractions 150-300 µm and >300 µm. The fractions >300 µm and 150-300 µm show nearly the same faunal distribution and therefore the results are presented here for both fractions combined (i.e. the >150 µm fraction). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment; only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (ab. 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterized by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats.
Resumo:
has to added by the author.
Resumo:
This study aims to understand the sociospatial transformations resulting from the depopulation of the fields and their effects on the rural landscape of Arroio do Só in Santa Maria - RS. To this end, we attempted to identify changes in the way of life of rural people, their activities and relationships and understand how this process has occurred, its causes and its impact on quality of life and social structure of the population that remained in place. The discussion on the modernization of agriculture is key to understanding this process. This district was chosen as a research site because it is a town that, in the past, had a very big socioeconomic dynamism, and now, according to the bankruptcy of several companies and the consequent emigration of much of the population, the sociospatial dynamic has changed. It was collected data from a secondary source of FIBGE and FEE in order to periodize population dynamics of the district, county and state. The qualitative research was conducted through interviews with the subjects in the field and their representatives, with the help of the Field Diary