963 resultados para inorganic laboratory experiments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air-ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, similar research has not identified solute locations in laboratory samples, nor the possible factors controlling solute segregation. To address this, we examined solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or Rose Bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (~2 µm). Freezing solutions in plastic versus glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with Rose Bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among marine calcifiers, shelled pteropods are expected to be particularly sensitive to ocean acidification, generated by the uptake of anthropogenic CO2 by the ocean, and the associated decrease of the seawater saturation state with respect to aragonite (omega aragonite). The few available studies have mostly focused on polar species although pteropods are also important components of temperate and tropical ecosystems. It is also unknown which parameter of the carbonate system controls calcification. Specimens of the temperate Mediterranean species Creseis acicula were maintained under seven different conditions of the carbonate chemistry, obtained by manipulating pH and total alkalinity, with the goal to disentangle the effects of pH and omega aragonite. Respiration, excretion as well as rates of net and gross calcification were not directly affected by a decrease in pH but decreased significantly with a decrease of omega aragonite. The decrease of gross calcification rates is consistent with that reported for polar species. Although the organisms were apparently able to maintain gross calcification rates under slightly undersaturated aragonite conditions, the clear net dissolution signal observed below saturation suggests that they are not able to build a shell in seawater corrosive to aragonite. The decrease in respiration and excretion, and the low O:N molar ratio, could be due to the short time that the organisms were allowed to acclimatize to their new environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter summarizes the principal results of drilling at Deep Sea Drilling Project (DSDP) Site 595, where the Ngendei Seismic Experiment and the emplacement of DARPA's Marine Seismic System (MSS) were carried out. Background and objectives for this work are presented in the introductory chapter to this volume. Interpretation of the seismic experiment and drilling results are presented in subsequent parts of this volume. The chapter also provides a detailed operational summary of the successful deployment of the MSS during Leg 91.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behavior of the plate boundary fault zone is of paramount importance in subduction zones, because it controls megathrust earthquake nucleation and propagation as well as the structural style of the forearc. In the Nankai area along the NanTroSEIZE (Kumano) drilling transect offshore SW Japan, a heterogeneous sedimentary sequence overlying the oceanic crust enters the subduction zone. In order to predict how variations in lithology, and thus mechanical properties, affect the formation and evolution of the plate boundary fault, we conducted laboratory tests measuring the shear strengths of sediments approaching the trench covering each major lithological sedimentary unit. We observe that shear strength increases nonlinearly with depth, such that the (apparent) coefficient of friction decreases. In combination with a critical taper analysis, the results imply that the plate boundary position is located on the main frontal thrust. Further landward, the plate boundary is expected to step down into progressively lower stratigraphic units, assisted by moderately elevated pore pressures. As seismogenic depths are approached, the décollement may further step down to lower volcaniclastic or pelagic strata but this requires specific overpressure conditions. High-taper angle and elevated strengths in the toe region may be local features restricted to the Kumano transect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the Italian project CO2 Monitor, two culture experiments were carried out in vertical closed photobioreactors with Pleurochrysis cf. pseudoroscoffensis Gayral & Fresnel 1983, a coccolithophore isolated from the Gulf of Trieste (North Adriatic Sea). The aim of this study was to investigate the effects induced by pH variations due to CO2 emissions on its growth and morphology. Two experiments were carried out with two different CO2 concentrations (1 and 2%). Growth and cell size in light microscopy, morphology and coccolith size in scanning electron microscopy, particulate nitrogen (PN) and particulate inorganic and organic carbon (PIC and POC) content of the coccolithophore were investigated during the light and dark phases. Dissolved inorganic nutrient (nitrate and phosphate) concentrations and pH of the medium and the presence of heterotrophic prokaryotes (HP) were monitored as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint mesocosm experiment took place in February/March 2013 in the bay of Villefranche in France as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 2 weeks period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseavillefranche2013.obs-vlfr.fr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint mesocosm experiment took place in June/July 2012 in Corsica (bay of Calvi, Stareso station;http://www.stareso.com/) as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 20 days period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseastareso2012.wordpress.com/.