1000 resultados para infrared luminescence
Resumo:
A broad absorption band around 500 nm is observed in ZnS nanoparticles. The absorption becomes more intensive and shifts to the blue as the particle size is decreased. The absorption energy is lower than the band gap of the particles and is considered to be caused by the surface states. This assignment is supported by the results of the fluorescence and of the thermoluminescence of the surface states. Both the absorption and the fluorescence reveal that the surface states are size dependent. The glow peak of the semiconductor particles is not varied as much upon decreasing size, indicating the trap depth of the surface states is not sensitive to the particle size. Considering these results, a new model on the size dependence of the surface states is proposed, which may explain our observations reasonably. (C) 1997 American Institute of Physics.
Resumo:
We have grown a high-quality 20 period InGaAs/GaAs quantum dot superlattice with a standard structure typically used for quantum well infrared photodetector. Normal incident absorption was observed around 13-15 mu m. Potential applications for this work include high-performance quantum dot infrared detectors.
Resumo:
Upon UV-irradiation at 254 nm, the photoluminescence of silver atoms in zeolite-Y decreases, meanwhile an absorption band shows up around 840 nm. By photostimulation at 840 nm, fluorescence of silver atoms is detected, which is called photostimulated luminescence, and the photoluminescence of silver atoms is increased slightly. These phenomena are attributed to the charge-transfer interaction between the zeolite framework and the entrapped silver atoms. (C) 1997 Published by Elsevier Science B.V.
Resumo:
The photoluminescence (PL) properties of ZnSe films grown by hot wall epitaxy are reported. The PL spectra show clear neutral donor-bound exciton peak; donor acceptor pair (DAP) peak, conduction band to acceptor (CA) peak, and their phonon replicas until fourth order. The conduction band to acceptor peak and it's phonon replicas exist until room temperature. From the ratio of PL intensities of DAP and CA peaks and their replicas, we obtain the Huang-Rhys factor S = 0.58, in agreement with other experiments for acceptor-bound exciton transitions. From the temperature dependence of PL intensities we derive the activation energy of thermal quenching process for the DAP transitions as about 7 meV.
Resumo:
A new technique is reported for the rapid determination of interstitial oxygen in heavily Sb-doped silicon. This technique includes wafer thinning and low-temperature 10 K infrared measurement on highly thinned wafers. The fine structure of the interstitial oxygen absorption band around 1136 cm(-1) is obtained. Our results show that this method efficiently reduces free-carrier absorption interference, allowing a high reliability of measurement, and can be used at resistivities down to 1 x 10(-2) Omega cm for heavily Sb-doped silicon.
Resumo:
In the photoluminescence (PL) of BaFBr:Eu2+,Eu3+, the emissions of Ea(2+), carrier electron-hole (e-h) recombination, and Eu3+ are observed, while in the photostimulated luminescence (PSL) only the emission of Eu2+ is exhibited. This disappearance of e-h recombination in PSL is considered to be caused by carrier migration during photo-stimulation. (C) 1997 American Institute of Physics.
Resumo:
The excitation spectrum of CdS dusters in zeolite-Y is consistent with their absorption spectrum, both showing two absorption bands that are assigned to the Is-is and Is-lp transitions, respectively. A new emission at 400 nn is considered to be the recombination of the bounded excitons. The emission firstly increases then decreases with increasing cluster size or loading. The emission by excitation into the Is-is band is stronger and sharper than that by excitation into the Is-lp band. This phenomenon is attributed to the size inhomogeneity and the strong electron-phonon interaction of the dusters. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
By considering all possible high order diffracted waves, the authors investigate the spectral response of two-dimensional gratings for quantum well infrared photodetectors (QWIPs). A new method is proposed that using long period gratings may improve grating quality and reduce the resulting cross talk in grating-coupled QWIPs. A sensitivity analysis indicates that the influence of variation of the grating constant on the coupling efficiency is less sensitive for the long period gratings than for the short ones. A large coupling efficiency has been demonstrated for long period gratings. The calculated wide grating response spectra are in good agreement with the experiment result. (C) 1996 American Institute of Physics.
Resumo:
After x-irradiation for 10 s, luminescence from BaFBr:Eu2+ phosphors by photostimulation of longer wavelength than F absorption bands was observed and assigned to the surface states or intrinsic defects of the powders. It is found that the luminescence by photostimulation into F bands can be reduced via electron migration from F centers into the surface states or intrinsic defects, thus reducing the x-ray storage or image stability. Surface passivation can lower these defects and improve the phosphors or imaging plate quality. (C) 1996 American Institute of Physics.
Resumo:
The authors report for the first time, normal incident infrared absorption around the wavelength of 13-15 mu m from a 20 period InGaAs/GaAs quantum dot supperlatice (QDS). The structure of a QDS has been-confirmed by cross-section transmission electron microscopy (TEM) and by a photoluminescence spectrum (PL). This opens the way to high performance 8-14 mu m quantum dot infrared detectors.
Resumo:
Photo-luminescence and electro-luminescence from step-graded index SiGe/Si quantum well grown by molecular beam epitaxy is reported. The SiGe/Si step-graded index quantum well structure is beneficial to the enhancing of electro-luminescence. The optical and electrical properties of this structure are discussed.
Resumo:
A voltage-controlled tunable two-color infrared detector with photovoltaic (PV) and photoconductive (PC) dual-mode operation at 3-5 mu m and 8-14 mu m using GaAs/AlAs/AlGaAs double barrier quantum wells (DBQWs) and bound-to-continuum GaAs/AlGaAs quantum wells is demonstrated. The photoresponse peak of the photovoltaic GaAs/AlAs/GaAlAs DBQWs is at 5.3 mu m, and that of the photoconductive GaAs/GaAlAs quantum wells is at 9.0 mu m. When the two-color detector is under a zero bias, the spectral response at 5.3 mu m is close to saturate and the peak detectivity at 80 K can reach 1.0X10(11) cmHz(1/2)/W, while the spectral photoresponsivity at 9.0 mu m is absolutely zero completely. When the external voltage of the two-color detector is changed to 2.0 V, the spectral photoresponsivity at 5.3 mu m becomes zero while the spectral photoresponsivity at 9.0 mu m increases comparable to that at 5.3 mu m under zero bias, and the peak detectivity (9.0 mu m) at 80 K can reach 1.5X10(10) cmHz(1/2)/W. Strictly speaking, this is a real bias-controlled tunable two-color infrared photodetector. We have proposed a model based on the PV and PC dual-mode operation of stacked two-color QWIPs and the effects of tunneling resonance with narrow energy width of photoexcited electrons in DBQWs, which can explain qualitatively the voltage-controlled tunable behavior of the photoresponse of the two-color infrared photodetector. (C) 1996 American Institute of Physics.