939 resultados para hurricane wind
Resumo:
Energy policies and technological progress in the development of wind turbines have made wind power the fastest growing renewable power source worldwide. The inherent variability of this resource requires special attention when analyzing the impacts of high penetration on the distribution network. A time-series steady-state analysis is proposed that assesses technical issues such as energy export, losses, and short-circuit levels. A multiobjective programming approach based on the nondominated sorting genetic algorithm (NSGA) is applied in order to find configurations that maximize the integration of distributed wind power generation (DWPG) while satisfying voltage and thermal limits. The approach has been applied to a medium voltage distribution network considering hourly demand and wind profiles for part of the U.K. The Pareto optimal solutions obtained highlight the drawbacks of using a single demand and generation scenario, and indicate the importance of appropriate substation voltage settings for maximizing the connection of MPG.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Broiler production in Brazil has turned into a very competitive activity in the late years. Constant innovation leads to higher productivity maintaining the same cost of production, which is a desirable situation. Lately one characteristic for broiler housing in Brazil has been the increase in birds density requiring the use of controlled environment through the use of fan and fogging systems in order to achieve better birds productive performance. Most Brazilian producer already uses cooling equipment however it is still unknown the right way to control the wind speed and direction towards the birds. This present research has the objective to evaluate the effect of the wind speed on the heat transfer from the birds to the environment for broilers at 27 days old. There was used 200 birds, placed in a wind tunnel measuring 1.10 m high by 1.10m wide x 10.0 m of length, and the birds density varied from 9, 16 and 20 birds/m 2. Two wind speed were simulated 340 rpm (1.0 m/s) and 250 rpm (0.3 m/s). The increase in the wind velocity related to the smaller bird densityled to a higher heat loss and to a more uniform temperature distribution in its exposed areas.
Resumo:
We present a simple mathematical model of a wind turbine supporting tower. Here, the wind excitation is considered to be a non-ideal power source. In such a consideration, there is interaction between the energy supply and the motion of the supporting structure. If power is not enough, the rotation of the generator may get stuck at a resonance frequency of the structure. This is a manifestation of the so-called Sommerfeld Effect. In this model, at first, only two degrees of freedom are considered, the horizontal motion of the upper tip of the tower, in the transverse direction to the wind, and the generator rotation. Next, we add another degree of freedom, the motion of a free rolling mass inside a chamber. Its impact with the walls of the chamber provides control of both the amplitude of the tower vibration and the width of the band of frequencies in which the Sommerfeld effect occur. Some numerical simulations are performed using the equations of motion of the models obtained via a Lagrangian approach.
Resumo:
Incentives for using wind power and the increasing price of energy might generate in a relatively short time a scenario where low voltage customers opt to install roof-top wind turbines. This paper focuses on evaluating the effects of such situation in terms of energy consumption, loss reduction, reverse power flow and voltage profiles. Various commercially-available roof-top wind turbines are installed in two secondary distribution circuits considering real-life wind speed data and seasonal load demand. Results are presented and discussed. © 2006 IEEE.
Resumo:
This paper presents the analysis of some usual MPPT (Maximum Power Point Tracking) strategies intended for small wind energy conversion (up to 1kW) based on permanent magnet synchronous generators (PMSG), considering the stand-alone application for a novel buck-boost integrated inverter. Each MPPT method is analytically introduced and then it is simulated using MatLab/Simulink considering standard conditions of wind and also commercially available turbines and generators. The extracted power in each case is compared with the maximum available power, so the tracking factor is calculated for each method. Thus, the focus is on the application to improve the efficiency of stand-alone wind energy conversion systems (WECS) with battery chargers and AC load supplied by inverter. Therefore, for this purpose a novel single phase buck-boost integrated inverter is introduced. Finally, the main experimental results for the introduced inverter are presented. © 2011 IEEE.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography