973 resultados para hot electron jet
Resumo:
Cu2Ge1-xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (rho) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1-xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of rho as a function of doping content for the samples Cu2InxGe1-xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3. (C)2014 Elsevier Ltd. All rights reserved.
Resumo:
Ni-Fe-Ga-based alloys form a new class of ferromagnetic shape memory alloys (FSMAs) that show considerable formability because of the presence of a disordered fcc gamma-phase. The current study explores the deformation processing of this alloy using an off-stoichiometric Ni55Fe59Ga26 alloy that contains the ductile gamma-phase. The hot deformation behavior of this alloy has been characterized on the basis of its flow stress variation obtained by isothermal constant true strain rate compression tests in the 1123-1323 K temperature range and strain rate range of 10(-3)-10 s(-1) and using a combination of constitutive modeling and processing map. The dynamic recrystallization (DRX) regime for thermomechanical processing has been identified for this Heusler alloy on the basis of the processing maps and the deformed microstructures. This alloy also shows evidence of dynamic strain-aging (DSA) effect which has not been reported so far for any Heusler FSMAs. Similar effect is also noticed in a Ni-Mn-Ga-based Heusler alloy which is devoid of any gamma-phase. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This report provides information about an electrodeposition based two-step synthesis methodology for producing core-shell Ag-(Ni-O) nanowires and their detailed structural and compositional characterization using electron microscopy technique. Nanowires were produced by employing anodic alumina templates with a pore diameter of 200 nm. In the first step of the synthesis process, nanocrystalline Ni-O was electrodeposited in a controlled manner such that it heterogeneously nucleated and grew only on the template pore walls without filling the pores from bottom upwards. This alumina template with pore walls coated with Ni-O was then utilized as a template during the electrodeposition of Ag in the second step. Electrodeposited Ag filled the template pores to finally produce Ag-(Ni-O) core-shell nanowires with an overall diameter of 200 nm.
Resumo:
Zn doped ternary compounds Cu2ZnxSn1-xSe3 (x = 0, 0.025, 0.05, 0.075) were prepared by solid state synthesis. The undoped compound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The surface morphology and elemental composition analysis for all the samples were studied by SEM (Scanning Electron Microscopy) and EPMA (Electron Probe Micro Analyzer), respectively. SEM micrographs of the hot pressed samples showed the presence of continuous and homogeneous grains confirming sufficient densification. Elemental composition of all the samples revealed an off-stoichiometry, which was determined by EPMA. Transport properties were measured between 324 K and 773 K. The electrical resistivity decreased up to the samples with Zn content x = 0.05 in Cu2ZnxSn1-xSe3, and slightly increased in the sample Cu2Zn0.075Sn0.925Se3. This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples showed 1/1 dependence, which points toward the dominance of phonon scattering at high temperatures. The maximum 1/TZF = 0.48 at 773 K was obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.
Resumo:
Niobium-based alloys are well-established refractory materials; as a result of their high melting temperature and good creep properties, these alloys find their applications in nuclear reactors. The present study deals with a microstructural response of these materials during hot working. The evolution of microstructure and texture during high-temperature deformation has been investigated in the temperature range 1500-1700A degrees C and strain rate range of 0.001-0.1 s(-1). For each deformed sample, the microstructure has been examined in detail. The microstructural features clearly revealed the formation of a substructure and the occurrence of dynamic recrystallization in a proper temperature-strain rate window. At low strain rates, the necklace structure formation was more prominent.
Resumo:
The heat transfer from a solid phase to an impinging non-isothermal liquid droplet is studied numerically. A new approach based on an arbitrary Lagrangian-Eulerian (ALE) finite element method for solving the incompressible Navier Stokes equations in the liquid and the energy equation within the solid and the liquid is presented. The novelty of the method consists in using the ALE-formulation also in the solid phase to guarantee matching grids along the liquid solid interface. Moreover, a new technique is developed to compute the heat flux without differentiating the numerical solution. The free surface and the liquid solid interface of the droplet are represented by a moving mesh which can handle jumps in the material parameter and a temperature dependent surface tension. Further, the application of the Laplace-Beltrami operator technique for the curvature approximation allows a natural inclusion of the contact angle. Numerical simulation for varying Reynold, Weber, Peclet and Biot numbers are performed to demonstrate the capabilities of the new approach. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700-1030 degrees C) and strain rate (10(-3)-10(-1) s(-1)), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 degrees C/10(-3) s(-1) and 1030 degrees C/10(-2) s(-1) being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700-730 degrees C/10(-3)-10(-1) s(-1) and 750-860 degrees C/10(-1.4)-10(-1) s(-1) combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.
Resumo:
Using idealized one-dimensional Eulerian hydrodynamic simulations, we contrast the behaviour of isolated supernovae with the superbubbles driven by multiple, collocated supernovae. Continuous energy injection via successive supernovae exploding within the hot/dilute bubble maintains a strong termination shock. This strong shock keeps the superbubble over-pressured and drives the outer shock well after it becomes radiative. Isolated supernovae, in contrast, with no further energy injection, become radiative quite early (less than or similar to 0.1Myr, tens of pc), and stall at scales less than or similar to 100 pc. We show that isolated supernovae lose almost all of their mechanical energy by 1 Myr, but superbubbles can retain up to similar to 40 per cent of the input energy in the form of mechanical energy over the lifetime of the star cluster (a few tens of Myr). These conclusions hold even in the presence of realistic magnetic fields and thermal conduction. We also compare various methods for implementing supernova feedback in numerical simulations. For various feedback prescriptions, we derive the spatial scale below which the energy needs to be deposited in order for it to couple to the interstellar medium. We show that a steady thermal wind within the superbubble appears only for a large number (greater than or similar to 10(4)) of supernovae. For smaller clusters, we expect multiple internal shocks instead of a smooth, dense thermalized wind.
Resumo:
Thrust-generating flapping foils are known to produce jets inclined to the free stream at high Strouhal numbers St = fA/U-infinity, where f is the frequency and A is the amplitude of flapping and U-infinity is the free-stream velocity. Our experiments, in the limiting case of St —> infinity (zero free-stream speed), show that a purely oscillatory pitching motion of a chordwise flexible foil produces a coherent jet composed of a reverse Benard-Karman vortex street along the centreline, albeit over a specific range of effective flap stiffnesses. We obtain flexibility by attaching a thin flap to the trailing edge of a rigid NACA0015 foil; length of flap is 0.79 c where c is rigid foil chord length. It is the time-varying deflections of the flexible flap that suppress the meandering found in the jets produced by a pitching rigid foil for zero free-stream condition. Recent experiments (Marais et al., J. Fluid Mech., vol. 710, 2012, p. 659) have also shown that the flexibility increases the St at which non-deflected jets are obtained. Analysing the near-wake vortex dynamics from flow visualization and particle image velocimetry (PIV) measurements, we identify the mechanisms by which flexibility suppresses jet deflection and meandering. A convenient characterization of flap deformation, caused by fluid-flap interaction, is through a non-dimensional effective stiffness', EI* = 8 EI/(rho V-TEmax(2) s(f) c(f)(3)/2), representing the inverse of the flap deflection due to the fluid-dynamic loading; here, EI is the bending stiffness of flap, rho is fluid density, V-TEmax is the maximum velocity of rigid foil trailing edge, s(f) is span and c(f) is chord length of the flexible flap. By varying the amplitude and frequency of pitching, we obtain a variation in EI* over nearly two orders of magnitude and show that only moderate EI*. (0.1 less than or similar to EI * less than or similar to 1 generates a sustained, coherent, orderly jet. Relatively `stiff' flaps (EI* greater than or similar to 1), including the extreme case of no flap, produce meandering jets, whereas highly `flexible' flaps (EI* less than or similar to 0.1) produce spread-out jets. Obtained from the measured mean velocity fields, we present values of thrust coefficients for the cases for which orderly jets are observed.
Resumo:
Densification mechanisms involved during reactive hot pressing (RHP) of zirconium carbide (ZrC) have been studied. RHP has been carried out using zirconium (Zr) and graphite (C) powders in the molar ratios 1:0.5, 1:0.67, 1:0.8, and 1:1 at 40MPa, 800 degrees C-1200 degrees C for different durations. The volume fractions of phases formed, including porosity, are determined from the measured density and from Rietveld analysis. Increased densification with an increasing nonstoichiometry in carbon has been observed. Microstructural and X-ray diffraction observations coupled with the predictions of a model based on the constitutive laws governing plastic flow of zirconium suggest that the better densification of nonstoichiometric compositions arise from the higher amount of starting Zr and also the longer duration of its availability for plastic flow during RHP. Volume shrinkage due to reaction between Zr and C and the gradual elimination of the soft metal phase limit the final density achievable. Based on these observations, a two-step RHP carried out at 800 degrees C and 1200 degrees C leads to a better densification than a single RHP at 1200 degrees C.
Resumo:
For a domain Omega in C and an operator T in B-n(Omega), Cowen and Douglas construct a Hermitian holomorphic vector bundle E-T over Omega corresponding to T. The Hermitian holomorphic vector bundle E-T is obtained as a pull-back of the tautological bundle S(n, H) defined over by Gr(n, H) a nondegenerate holomorphic map z bar right arrow ker(T - z), z is an element of Omega. To find the answer to the converse, Cowen and Douglas studied the jet bundle in their foundational paper. The computations in this paper for the curvature of the jet bundle are rather intricate. They have given a set of invariants to determine if two rank n Hermitian holomorphic vector bundle are equivalent. These invariants are complicated and not easy to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic jet bundle J(k)(L-f), we have shown that the curvature of the line bundle L-f completely determines the class of J(k)(L-f). In case of rank Hermitian holomorphic vector bundle E-f, We have calculated the curvature of jet bundle J(k)(E-f) and also obtained a trace formula for jet bundle J(k)(E-f).
Resumo:
An electrodeposition based methodology for synthesizing Ni-Cr-Fe nanowires is provided. As-synthesized nanowires were 200 nm in diameter and more than 5 mu m in length. Detailed characterization of the nanowires using electron microscopy technique revealed an amorphous microstructure for the nanowires with uniform distribution of Ni, Fe and Cr atoms. Annealing of the nanowire using the electron beam inside electron microscope resulted in gradual crystallization of amorphous microstructure into a nanocrystalline one which illustrated the potential for microstructural engineering of the nanowires. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1-xYxMnO3, for x=0.1-0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below T-N(Mn) approximate to 80 K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x < 0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1-xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation. (C) 2014 Elsevier B.V. All rights reserved.