937 resultados para hormonal induction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To re-evaluate the safety of hormonal contraceptives (HC) after uterine evacuation of complete hydatidiform mole (CHM). Historical database review. Charing Cross Hospital Gestational Trophoblastic Disease Centre, London, United Kingdom. Two thousand four hundred and twenty-three women with CHM of whom 154 commenced HC while their human chorionic gonadotropin (hCG) was still elevated, followed between 2003 and 2012. We compared time to hCG remission between HC users and nonusers. The relationship between HC use and gestational trophoblastic neoplasia (GTN) development was assessed. The relationship between HC use and a high International Federation of Gynecology and Obstetrics (FIGO) risk score was determined. Time to hCG remission, risk of developing postmolar GTN and proportion of women with high FIGO risk score. No relationship was observed between HC use with mean time to hCG remission (HC users versus non-users: 12 weeks in both, P = 0.19), GTN development (HC users versus non-users: 20.1 and 16.7%, P = 0.26) or high-risk FIGO score (HC users versus nonusers: 0% and 8%, P = 0.15). Moreover, no association between HC and GTN development was found, even when an age-adjusted model was used (OR = 1.37, 95% CI 0.91-2.08, P = 0.13). The use of current HC is not associated with development of postmolar GTN or delayed time to hCG remission. Therefore, HC can be safely used to prevent a new conception following CHM regardless of hCG level. Non-concurrent cohort study to re-evaluate the safety of low dose HCs after uterine evacuation of CHM.
Resumo:
The analysis of the feasibility and economics of amorphous core power transformers for induction heating applications in the field 10-50 kHz is developped. The results obtained on a 25 kHz-150 kVA concentric winding trial unit are presented. © 1990.
Resumo:
Age at puberty in beef heifers can influence economic efficiency of beef production through effects on both age at first calving (2 vs. 3+ years of age) and the time of conception of heifers in their initial breeding season. An overarching factor that influences age at puberty in heifers is nutritional management during both the preweaning period and between weaning and the breeding season. Age at puberty is heritable and selection for precocious puberty in populations such as the Nelore breed has the potential to substantially influence production efficiency. Highly effective hormonal technologies exist to aid in induction of puberty in well managed heifers. Age at first ovulation and pregnancy in heifers can be substantially influenced through implementation of nutritional and/or hormonal manipulation strategies. In the long term, combinations of genetic selection, nutritional strategies, and hormonal intervention when necessary will optimize efficiency of this aspect of beef production.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The greenhouse production associated with the fertigation management, have established in Brazil as economical alternative for several horticultural species. With this strategy this study had as aim to evaluate possible impacts in the metabolism of plants of bell pepper (Capsicum annuum L.; cv Elisa) in response to the increase of mineral concentration in the soil. During the experiments, the some nutrient concentrations were altered, to obtain high values of electric conductivity (EC) in the soil solution. The EC values commonly observed in the traditional fertigation system were adopted, as control. It was also verified the possibility of reduction of the mineral stress impact by the application of organic matter in the soil. Parameters of the antioxidative response system, as the superoxide dismutase (SOD) and catalase enzyme activities besides the proline content were evaluated to measure the extension of the saline stress and their effects on the plants. The increase of EC of the soil induced to the increase of the proline concentration and the SOD activity. Unexpectedly, it was verified that the saline stress inhibited the activity of the enzyme catalase. It was also concluded that the monitoring of EC of the soil is an indispensable tool to reach success in the fertigation system and that the study of the activity of the enzymes of the antioxidative response system, and the proline contents can be assumed as indicators in of the levels of stress in bell pepper plants (Capsicum annuum L.; cv Elisa).
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Starting induction motors on isolated or weak systems is a highly dynamic process that can cause motor and load damage as well as electrical network fluctuations. Mechanical damage is associated with the high starting current drawn by a ramping induction motor. In order to compensate the load increase, the voltage of the electrical system decreases. Different starting methods can be applied to the electrical system to reduce these and other starting method issues. The purpose of this thesis is to build accurate and usable simulation models that can aid the designer in making the choice of an appropriate motor starting method. The specific case addressed is the situation where a diesel-generator set is used as the electrical supplied source to the induction motor. The most commonly used starting methods equivalent models are simulated and compared to each other. The main contributions of this thesis is that motor dynamic impedance is continuously calculated and fed back to the generator model to simulate the coupling of the electrical system. The comparative analysis given by the simulations has shown reasonably similar characteristics to other comparative studies. The diesel-generator and induction motor simulations have shown good results, and can adequately demonstrate the dynamics for testing and comparing the starting methods. Further work is suggested to refine the equivalent impedance presented in this thesis.
Resumo:
Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up-and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants.
Resumo:
The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a survey of evolutionary algorithms that are designed for decision-tree induction. In this context, most of the paper focuses on approaches that evolve decision trees as an alternate heuristics to the traditional top-down divide-and-conquer approach. Additionally, we present some alternative methods that make use of evolutionary algorithms to improve particular components of decision-tree classifiers. The paper's original contributions are the following. First, it provides an up-to-date overview that is fully focused on evolutionary algorithms and decision trees and does not concentrate on any specific evolutionary approach. Second, it provides a taxonomy, which addresses works that evolve decision trees and works that design decision-tree components by the use of evolutionary algorithms. Finally, a number of references are provided that describe applications of evolutionary algorithms for decision-tree induction in different domains. At the end of this paper, we address some important issues and open questions that can be the subject of future research.
Resumo:
Background: This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results: The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions: We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.