899 resultados para histamine h1 receptor antagonist


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleus accumbens, a site within the ventral striatum, is best known for its prominent role in mediating the reinforcing effects of drugs of abuse such as cocaine, alcohol, and nicotine. Indeed, it is generally believed that this structure subserves motivated behaviors, such as feeding, drinking, sexual behavior, and exploratory locomotion, which are elicited by natural rewards or incentive stimuli. A basic rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. It is likely, therefore, that the nucleus accumbens may serve as a substrate for reinforcement learning. However, there is surprisingly little information concerning the neural mechanisms by which appetitive responses are learned. In the present study, we report that treatment of the nucleus accumbens core with the selective competitive N-methyl-d-aspartate (NMDA) antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol/0.5 μl bilaterally) impairs response-reinforcement learning in the acquisition of a simple lever-press task to obtain food. Once the rats learned the task, AP-5 had no effect, demonstrating the requirement of NMDA receptor-dependent plasticity in the early stages of learning. Infusion of AP-5 into the accumbens shell produced a much smaller impairment of learning. Additional experiments showed that AP-5 core-treated rats had normal feeding and locomotor responses and were capable of acquiring stimulus-reward associations. We hypothesize that stimulation of NMDA receptors within the accumbens core is a key process through which motor responses become established in response to reinforcing stimuli. Further, this mechanism, may also play a critical role in the motivational and addictive properties of drugs of abuse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During past decades, knowledge of melanoma biology has increased considerably. Numerous therapeutic modalities based on this knowledge are currently under investigation. Advanced melanoma, nevertheless, remains a prime example of poor treatment response that may, in part, be the consequence of activated N-Ras oncoproteins. Besides oncogenic Ras, wild-type Ras gene products also play a key role in receptor tyrosine kinase growth factor signaling, known to be of importance in oncogenesis and tumor progression of a variety of human neoplasms, including malignant melanoma; therefore, it is reasonable to speculate that a pharmacological approach that curtails Ras activity may represent a sensible approach to inhibit melanoma growth. To test this concept, the antitumor activity of S-trans, trans-farnesylthiosalicylic acid (FTS), a recently discovered Ras antagonist that dislodges Ras from its membrane-anchoring sites, was evaluated. The antitumor activity of FTS was assessed both in vitro and in vivo in two independent SCID mouse xenotransplantation models of human melanoma expressing either wild-type Ras (cell line 518A2) or activated Ras (cell line 607B). We show that FTS (5–50 μM) reduces the amounts of activated N-Ras and wild-type Ras isoforms both in human melanoma cells and Rat-1 fibroblasts, interrupts the Ras-dependent extracellular signal-regulated kinase in melanoma cells, inhibits the growth of N-Ras-transformed fibroblasts and human melanoma cells in vitro and reverses their transformed phenotype. FTS also causes a profound and statistically significant inhibition of 518A2 (82%) and 607B (90%) human melanoma growth in SCID mice without evidence of drug-related toxicity. Our findings stress the notion that FTS may qualify as a novel and rational treatment approach for human melanoma and possibly other tumors that either carry activated ras genes or rely on Ras signal transduction more heavily than nonmalignant cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mature T cell receptor (TCR) repertoire is shaped by positive- and negative-selection events taking place during T cell development. These events are regulated by interactions between the TCR and major histocompatibility complex molecules presenting self-peptides. It has been shown that many antagonist peptides are efficient at mediating positive selection. In this study we analyzed the effects of a transgene encoding an antagonist peptide (influenza NP34) that is presented by H-2Db in a Tap-1-independent fashion in mice expressing the influenza NP68-specific TCR F5. We find that the transgenic peptide does not mediate positive or negative selection in F5+Tap-1−/− mice, but inhibits maturation of CD8+ single positive thymocytes in F5+Tap-1+ mice without inducing signs of negative selection. We conclude that antagonism of antigen recognition occurs not only at the level of mature T cells but also in T cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two cannabinoid receptors have been identified: CB1, present in the central nervous system (CNS) and to a lesser extent in other tissues, and CB2, present outside the CNS, in peripheral organs. There is evidence for the presence of CB2-like receptors in peripheral nerve terminals. We report now that we have synthesized a CB2-specific agonist, code-named HU-308. This cannabinoid does not bind to CB1 (Ki > 10 μM), but does so efficiently to CB2 (Ki = 22.7 ± 3.9 nM); it inhibits forskolin-stimulated cyclic AMP production in CB2-transfected cells, but does so much less in CB1-transfected cells. HU-308 shows no activity in mice in a tetrad of behavioral tests, which together have been shown to be specific for tetrahydrocannabinol (THC)-type activity in the CNS mediated by CB1. However, HU-308 reduces blood pressure, blocks defecation, and elicits anti-inflammatory and peripheral analgesic activity. The hypotension, the inhibition of defecation, the anti-inflammatory and peripheral analgesic effects produced by HU-308 are blocked (or partially blocked) by the CB2 antagonist SR-144528, but not by the CB1 antagonist SR-141716A. These results demonstrate the feasibility of discovering novel nonpsychotropic cannabinoids that may lead to new therapies for hypertension, inflammation, and pain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-α-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation ≈40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to ≈60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain–interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on l-type calcium channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engagement of the mast cell high-affinity receptor for immunoglobulin E (IgE), FcɛRI, induces tyrosine phosphorylation of Syk, a non-receptor tyrosine kinase, that has been demonstrated as critical for degranulation. Herein we describe a synthetic compound, ER-27319, as a potent and selective inhibitor of antigen or anti-IgE-mediated degranulation of rodent and human mast cells. ER-27319 affected neither Lyn kinase activity nor the antigen-induced phosphorylation of the FcɛRI but did effectively inhibit the tyrosine phosphorylation of Syk and thus its activity. As a consequence, tyrosine phosphorylation of phospholipase C-γ1, generation of inositol phosphates, release of arachidonic acid, and secretion of histamine and tumor necrosis factor α were also inhibited. ER-27319 did not inhibit the anti-CD3-induced tyrosine phosphorylation of phospholipase C-γ1 in Jurkat T cells, demonstrating a specificity for Syk-induced signals. In contrast the tyrosine phosphorylation and activation of Syk, induced by in vitro incubation with the phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) of FcɛRI γ subunit or by antigen activation of RBL-2H3 cells, was specifically inhibited by ER-27319. However, when ER-27319 was added to immunoprecipitated Syk, derived from activated cells, no effect was seen on Syk activity. ER-27319 did not inhibit the tyrosine phosphorylation of Syk induced by activation in the presence of Igβ ITAM or the anti-IgM-induced phosphorylation of Syk in human peripheral B cells. Therefore, ER-27319 selectively interferes with the FcɛRI γ phospho-ITAM activation of Syk in vitro and in intact cells. These results confirm the importance of Syk in FcɛRI-mediated responses in mast cells and demonstrate the mast cell selectivity and therapeutic potential of ER-27319 in the treatment of allergic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of l-type Ca2+ channels is increased by dihydropyridine (DHP) agonists and inhibited by DHP antagonists, which are widely used in the therapy of cardiovascular disease. These drugs bind to the pore-forming α1 subunits of l-type Ca2+ channels. To define the minimal requirements for DHP binding and action, we constructed a high-affinity DHP receptor site by substituting a total of nine amino acid residues from DHP-sensitive l-type α1 subunits into the S5 and S6 transmembrane segments of domain III and the S6 transmembrane segment of domain IV of the DHP-insensitive P/Q-type α1A subunit. The resulting chimeric α1A/DHPS subunit bound DHP antagonists with high affinity in radioligand binding assays and was inhibited by DHP antagonists with high affinity in voltage clamp experiments. Substitution of these nine amino acid residues yielded 86% of the binding energy of the l-type α1C subunit and 92% of the binding energy of the l-type α1S subunit for the high-affinity DHP antagonist PN200–110. The activity of chimeric Ca2+ channels containing α1A/DHPS was increased 3.5 ± 0.7-fold by the DHP agonist (−)Bay K8644. The effect of this agonist was stereoselective as in l-type Ca2+ channels since (+) Bay K8644 inhibited the activity of α1A/DHPS. The results show conclusively that DHP agonists and antagonists bind to a single receptor site at which they have opposite effects on Ca2+ channel activity. This site contains essential components from both domains III and IV, consistent with a domain interface model for binding and allosteric modulation of Ca2+ channel activity by DHPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human estrogen receptor α (ER α) has been tagged at its amino terminus with the S65T variant of the green fluorescent protein (GFP), allowing subcellular trafficking and localization to be observed in living cells by fluorescence microscopy. The tagged receptor, GFP-ER, is functional as a ligand-dependent transcription factor, responds to both agonist and antagonist ligands, and can associate with the nuclear matrix. Its cellular localization was analyzed in four human breast cancer epithelial cell lines, two ER+ (MCF7 and T47D) and two ER− (MDA-MB-231 and MDA-MB-435A), under a variety of ligand conditions. In all cell lines, GFP-ER is observed only in the nucleus in the absence of ligand. Upon the addition of agonist or antagonist ligand, a dramatic redistribution of GFP-ER from a reticular to punctate pattern occurs within the nucleus. In addition, the full antagonist ICI 182780 alters the nucleocytoplasmic compartmentalization of the receptor and causes partial accumulation in the cytoplasm in a process requiring continued protein synthesis. GFP-ER localization varies between cells, despite being cultured and treated in a similar manner. Analysis of the nuclear fluorescence intensity for variation in its frequency distribution helped establish localization patterns characteristic of cell line and ligand. During the course of this study, localization of GFP-ER to the nucleolar region is observed for ER− but not ER+ human breast cancer epithelial cell lines. Finally, our work provides a visual description of the “unoccupied” and ligand-bound receptor and is discussed in the context of the role of ligand in modulating receptor activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FLK-1/vascular endothelial growth factor receptor 2 (VEGFR-2) is one of the receptors for VEGF. In this study we examined the effect of cell density on activation of VEGFR-2. VEGF induces only very slight tyrosine phosphorylation of VEGFR-2 in confluent (95–100% confluent) pig aortic endothelial (PAE) cells. In contrast, robust VEGF-dependent tyrosine phosphorylation of VEGFR-2 was observed in cells plated in sparse culture conditions (60–65% confluent). A similar cell density-dependent phenomenon was observed in different endothelial cells but not in NIH-3T3 fibroblast cells expressing VEGFR-2. Stimulating cells with high concentrations of VEGF or replacing the extracellular domain of VEGFR-2 with that of the colony-stimulating factor 1 receptor did not alleviate the sensitivity of VEGFR-2 to cell density, indicating that the confluent cells were probably not secreting an antagonist to VEGF. Furthermore, in PAE cells, ectopically introduced platelet-derived growth factor α receptor could be activated at both high and low cell density conditions, indicating that the density effect was not universal for all receptor tyrosine kinases expressed in endothelial cells. In addition to lowering the density of cells, removing divalent cations from the medium of confluent cells potentiated VEGFR-2 phosphorylation in response to VEGF. These findings suggested that cell–cell contact may be playing a role in regulating the activation of VEGFR-2. To this end, pretreatment of confluent PAE cells with a neutralizing anti-cadherin-5 antibody potentiated the response of VEGFR-2 to VEGF. Our data demonstrate that endothelial cell density plays a critical role in regulating VEGFR-2 activity, and that the underlying mechanism appears to involve cadherin-5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate glucose and lipid homeostasis. The PPARγ subtype plays a central role in the regulation of adipogenesis and is the molecular target for the 2,4-thiazolidinedione class of antidiabetic drugs. Structural studies have revealed that agonist ligands activate the PPARs through direct interactions with the C-terminal region of the ligand-binding domain, which includes the activation function 2 helix. GW0072 was identified as a high-affinity PPARγ ligand that was a weak partial agonist of PPARγ transactivation. X-ray crystallography revealed that GW0072 occupied the ligand-binding pocket by using different epitopes than the known PPAR agonists and did not interact with the activation function 2 helix. In cell culture, GW0072 was a potent antagonist of adipocyte differentiation. These results establish an approach to the design of PPAR ligands with modified biological activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell receptor (TCR) antagonists inhibit antigen-induced T cell activation and by themselves fail to induce phenotypic changes associated with T cell activation. However, we have recently shown that TCR antagonists are inducers of antigen-presenting cell (APC)–T cell conjugates. The signaling pathway associated with this cytoskeleton-dependent event appears to involve tyrosine phosphorylation and activation of Vav. In this study, we investigated the role played by the protein tyrosine kinases Fyn, Lck, and ZAP-70 in antagonist-induced signaling pathway. Antagonist stimulation increased tyrosine phosphorylation and kinase activity of Fyn severalfold, whereas little or no increase in Lck and ZAP-70 activity was observed. Second, TCR stimulation of Lck−, Fynhi Jurkat cells induced strong tyrosine phosphorylation of Vav. In contrast, minimal increase in tyrosine phosphorylation of Vav was observed in Lckhi, Fynlo Jurkat cells. Finally, study of T cells from a Fyn-deficient TCR transgenic mouse also showed that Fyn was required for tyrosine phosphorylation and activation of Vav induced by both antagonist and agonist peptides. The deficiency in Vav phosphorylation in Fyn-deficient T cells was associated with a defect in the formation of APC–T cell conjugates when T cells were stimulated with either agonist or antagonist peptide. We conclude from these results that Vav is a selective substrate for Fyn, especially under conditions of low-affinity TCR-mediated signaling, and that this signaling pathway involving Fyn, Vav, and Rac-1 is required for the cytoskeletal reorganization that leads to T cell–APC conjugates and the formation of the immunologic synapse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constitutive activity, or ligand-independent activity, of mutant G protein-coupled receptors (GPCRs) has been described extensively and implicated in the pathology of many diseases. Using the corticotropin-releasing factor (CRF) receptor and the thrombin receptor as a model, we present a ligand-dependent constitutive activation of a GPCR. A chimera in which the N-terminal domain of the CRF receptor is replaced by the amino-terminal 16 residues of CRF displays significant levels of constitutive activation. The activity, as measured by intracellular levels of cAMP, is blocked in a dose-dependent manner by the nonpeptide antagonist antalarmin. These results support a propinquity effect in CRF receptor activation, in which the amino-terminal portion of the CRF peptide is presented to the body of the receptor in the proper proximity for activation. This form of ligand-dependent constitutive activation may be of general applicability for the creation of constitutively activated GPCRs that are regulated by peptide ligands such as CRF. These chimeras may prove useful in analyzing mechanisms of receptor regulation and in the structural analysis of ligandactivated receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke and head trauma are worldwide public health problems and leading causes of death and disability in humans, yet, no adequate neuroprotective treatment is available for therapy. Glutamate antagonists are considered major drug candidates for neuroprotection in stroke and trauma. However, N-methyl-d-aspartate antagonists failed clinical trials because of unacceptable side effects and short therapeutic time window. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonists derived from the quinoxalinedione scaffold cannot be used in humans because of their insolubility and resulting renal toxicity. Therefore, achieving water solubility of quinoxalinediones without loss of selectivity and potency profiles becomes a major challenge for medicinal chemistry. One of the major tenets in the chemistry of glutamate antagonists is that the incorporation of phosphonate into the glutamate framework results in preferential N-methyl-d-aspartate antagonism. Therefore, synthesis of phosphonate derivatives of quinoxalinediones was not pursued because of a predicted loss of their selectivity toward AMPA. Here, we report that introduction of a methylphosphonate group into the quinoxalinedione skeleton leaves potency as AMPA antagonists and selectivity for the AMPA receptor unchanged and dramatically improves solubility. One such novel phosphonate quinoxalinedione derivative and competitive AMPA antagonist ZK200775 exhibited a surprisingly long therapeutic time window of >4 h after permanent occlusion of the middle cerebral artery in rats and was devoid of renal toxicity. Furthermore, delayed treatment with ZK200775 commencing 2 h after onset of reperfusion in transient middle cerebral artery occlusion resulted in a dramatic reduction of the infarct size. ZK200775 alleviated also both cortical and hippocampal damage induced by head trauma in the rat. These observations suggest that phosphonate quinoxalinedione-based AMPA antagonists may offer new prospects for treatment of stroke and trauma in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent discovery of glycine transporters in both the central nervous system and the periphery suggests that glycine transport may be critical to N-methyl-d-aspartate receptor (NMDAR) function by controlling glycine concentration at the NMDAR modulatory glycine site. Data obtained from whole-cell patch–clamp recordings of hippocampal pyramidal neurons, in vitro, demonstrated that exogenous glycine and glycine transporter type 1 (GLYT1) antagonist selectively enhanced the amplitude of the NMDA component of a glutamatergic excitatory postsynaptic current. The effect was blocked by 2-amino-5-phosphonovaleric acid and 7-chloro-kynurenic acid but not by strychnine. Thus, the glycine-binding site was not saturated under the control conditions. Furthermore, GLYT1 antagonist enhanced NMDAR function during perfusion with medium containing 10 μM glycine, a concentration similar to that in the cerebrospinal fluid in vivo, thereby supporting the hypothesis that the GLYT1 maintains subsaturating concentration of glycine at synaptically activated NMDAR. The enhancement of NMDAR function by specific GLYT1 antagonism may be a feasible target for therapeutic agents directed toward diseases related to hypofunction of NMDAR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of the estrogen receptor/ligand complex with a DNA estrogen response element is known to regulate gene transcription. In turn, specific conformations of the receptor-ligand complex have been postulated to influence unique subsets of estrogen-responsive genes resulting in differential modulation and, ultimately, tissue-selective outcomes. The estrogen receptor ligands raloxifene and tamoxifen have demonstrated such tissue-specific estrogen agonist/antagonist effects. Both agents antagonize the effects of estrogen on mammary tissue while mimicking the actions of estrogen on bone. However, tamoxifen induces significant stimulation of uterine tissue whereas raloxifene does not. We postulate that structural differences between raloxifene and tamoxifen may influence the conformations of their respective receptor/ligand complexes, thereby affecting which estrogen-responsive genes are modulated in various tissues. These structural differences are 4-fold: (A) the presence of phenolic hydroxyls, (B) different substituents on the basic amine, (C) incorporation of the stilbene moiety into a cyclic benzothiophene framework, and (D) the imposition of a carbonyl “hinge” between the basic amine-containing side chain and the olefin. A series of raloxifene analogs that separately exemplify each of these differences have been prepared and evaluated in a series of in vitro and in vivo assays. This strategy has resulted in the development of a pharmacophore model that attributes the differences in effects on the uterus between raloxifene and tamoxifen to a low-energy conformational preference imparting an orthogonal orientation of the basic side chain with respect to the stilbene plane. This three-dimensional array is dictated by a single carbon atom in the hinge region of raloxifene. These data indicate that differences in tissue selective actions among benzothiophene and triarylethylene estrogen receptor modulators can be ascribed to discrete ligand conformations.