931 resultados para high value-added compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a large panel dataset of Chinese manufacturing enterprises during 1999-2005, which accounts for over 90% of China’s industrial output, and robust econometric procedures we show that the Chinese banking system has helped to support the growth of both firm value added and TFP. We find that access to bank loans is positively correlated with future value added and TFP growth. We also find that firms with access to bank loans tend to grow faster in regions with greater banking sector development. While the effects of bank loans on firm growth are more pronounced in the case of purely private-owned and foreign firms, they are positive and statistically significant even in the case of state-owned and collectively-owned firms. We show that excluding loss-making firms from the sample does not change the qualitative nature of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally believed that the structural reforms that were introduced in India following the macro-economic crisis of 1991 ushered in competition and forced companies to become more efficient. However, whether the post-1991 growth is an outcome of more efficient use of resources or greater use of factor inputs remains an open empirical question. In this paper, we use plant-level data from 1989–1990 and 2000–2001 to address this question. Our results indicate that while there was an increase in the productivity of factor inputs during the 1990s, most of the growth in value added is explained by growth in the use of factor inputs. We also find that median technical efficiency declined in all but one of the industries between 1989–1990 and 2000–2001, and that change in technical efficiency explains a very small proportion of the change in gross value added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to characterise and compare fast pyrolysis product yields from straw, high yielding perennial grasses and hardwoods. Feedstocks selected for this study include: wheat straw (Triticum aestivum), switch grass (Panicum virgatum), miscanthus (Miscanthus x giganteus), willow short rotation coppice (Salix viminalis) and beech wood (Fagus sylvatica). The experimental work is divided into two sections: analytical (TGA and Py-GC-MS) and laboratory scale processing using a continuously fed bubbling fluidized bed reactor with a capacity of up to 1 kg/h. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) has been used to quantify pyrolysis products and simulate fast pyrolysis heating rates, in order to study potential key light and medium volatile decomposition products found in these feedstocks. Py-GC-MS quantification results show that the highest yields of furfural (0.57 wt.%), 2-furanmethanol (0.18 wt.%), levoglucosan (0.73 wt.%), 1,2-benzenediol (0.27 wt.%) and 2-methoxy-4-vinylphenol (0.38 wt.%) were found in switch grass, and that willow SRC produced the highest yield of phenol (0.33 wt.%). The bio-oil higher heating value was highest for switch grass (22.3 MJ/kg). Water content within the bio-oil is highest in the straw and perennial grasses and lowest in the hardwood willow SRC. The high bio-oil and char heating value and low water content found in willow SRC, makes this crop an attractive energy feedstock for fast pyrolysis processing, if the associated production costs and harvest yields can be maintained at current reported values. The bio-oil from switch grass has the highest potential for the production of high value chemicals. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An organisation’s ability to internalise external knowledge and learn from various sources in undertaking new product development and/or entering a new market is crucial to its competitive performance. Nevertheless, little attention has been paid to how growth-oriented small firms identify and exploit entrepreneurial opportunities, i.e. take entrepreneurial action, related to such methods of development, in a mature, contracting industry. The latter is particularly relevant to recent discussion and debate in academic and policy-making circles concerning the salvage of the clothing manufacture industry in developed industrialised countries, by intensifying efforts relating to diversification into high value manufacturing sectors. This paper, based on an instrumental case-firm, demonstrates analytically how learning as entrepreneurial action relating to diversifying into /technical clothing – i.e. a high value manufacturing/innovatory sector - takes place, drawing on situated learning theory. It is argued that learning relating to such entrepreneurial action is dynamic in nature and is founded on specific organising principles that foster both inter- and intracommunal learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current economic climate and a continuing fall in output of the UK construction industry has led to falling prices and margins particularly affecting those lower down in the supply chain such as specialist subcontractors. Coen Ltd. is one such company based in the West Midlands. Faced with a need to up its game it has embarked on a business improvement programme concentrating on better operational efficiency, building stronger client relationships and delivering value added services. Lacking appropriate internal resources Coen has joined with Aston Business School in a 2 year ERDF sponsored project to fulfil the transformation programme. The paper will describe the evolution of product- service offerings in construction and link this with the work being carried out at Coen with Aston and outline the anticipated outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Short product life cycle and/or mass customization necessitate reconfiguration of operational enablers of supply chain (SC) from time to time in order to harness high levels of performance. The purpose of this paper is to identify the key operational enablers under stochastic environment on which practitioner should focus while reconfiguring a SC network. Design/methodology/approach: The paper used interpretive structural modeling (ISM) approach that presents a hierarchy-based model and the mutual relationships among the enablers. The contextual relationship needed for developing structural self-interaction matrix (SSIM) among various enablers is realized by conducting experiments through simulation of a hypothetical SC network. Findings: The research identifies various operational enablers having a high driving power towards assumed performance measures. In this regard, these enablers require maximum attention and of strategic importance while reconfiguring SC. Practical implications: ISM provides a useful tool to the SC managers to strategically adopt and focus on the key enablers which have comparatively greater potential in enhancing the SC performance under given operational settings. Originality/value: The present research realizes the importance of SC flexibility under the premise of reconfiguration of the operational units in order to harness high value of SC performance. Given the resulting digraph through ISM, the decision maker can focus the key enablers for effective reconfiguration. The study is one of the first efforts that develop contextual relations among operational enablers for SSIM matrix through integration of discrete event simulation to ISM. © Emerald Group Publishing Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The publication represents a multi-dimensional and multi-faced, in depth assessment of the most significant determinants of the EU development as a political, economic and legal entity, in its format emerging from the Lisbon Treaty. The book represents an important contribution to our understanding of the most profound issues in the recent process of EU integration, including the issue of maintaining its cohesion and coherence under the stress of global challanges faced also by the European Union. Autohors formulated worthwhile conclusions of high value not only for academics but also for political decision-makers, which gives the book same competitive edge over its more theoretical and, hence, less practice-oriented, knack. The arumentation presented in the book would not be left without a reaction of the academic and/or professional circles. I take it almost for granted that the overall setting of the argumentation presented in it, as well as specific points made in its various chapters would find their adequate resonance in a high profile discussion likely to emerge after the book would have been published.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time, cost and quality are the prime objectives of any project. Unfortunately, today’s project management does not always ensure the realisation of these objectives. The main reasons of project non-achievement are changes in scope and design, changes in Government policies and regulations, unforeseen inflation, under-estimation and mis-estimation. An overall organisational approach with the application of appropriate management philosophies, tools and techniques can only solve the problem. The present study establishes a methodology for achieving success in implementing projects using a business process re-engineering (BPR) framework. Internal performance characteristics are introspected through condition diagnosis that identifies and prioritises areas of concern requiring attention. Process re-engineering emerges as a most critical area for immediate attention. Project process re-engineering is carried out by eliminating non-value added activities, taking up activities concurrently by applying information systems rigorously and applying risk management techniques throughout the project life cycle. The overall methodology is demonstrated through applications to cross country petroleum pipeline project organisation in an Indian scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses novel data on trade mark activity of UK manufacturing and service sector firms to investigate whether trade marks improve the profitability and productivity of firms. We first analyse Tobin`s q, the ratio of stock market value to book value of tangible assets. We then investigate the relationship between trade mark activity and productivity, using a value added production function. Finally we examine interactions between firms IP activity, to explore creative destruction and growth via innovation. We find trade marks are positively related to both Tobin`s q and to productivity. Also in the short run greater IP activity by other firms in the industry reduces the value added of the firm, but this same competitive pressure has later benefits via productivity growth, also reflected in higher stock market value. This describes the Schumpeterian process of competition through innovation, restraining profit margins while increasing product variety and quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ε-caprolactam is a monomer of high value. Therefore, the chemical reutilization of polyamide 6 containing carpets for ε-caprolactam recovery offers some economic benefit and is performed on a technical scale with the help of the Zimmer-process. By this process polyamide 6 is depolymerized with steam and phosphoric acid. An alternative to this process is the thermal depolymerization - catalyzed or non-catalyzed. To investigate this alternative in more detail, the formal kinetic parameters of (i) the thermal depolymerization of polyamide 6, (ii) the thermal depolymerization in presence of sodium/potassium hydoxide, and (iii) the thermal depolymerization in presence of phosphoric acid are determined in this work. Based on the kinetics of the catalyzed or non-catalyzed depolymerization a stepwise pyrolysis procedure is designed by which the formation of ε-caprolactam from polyamide 6 can be separated from the formation of other pyrolysis products. © 2001 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to demonstrate analytically how entrepreneurial action as learning relating to diversifying into technical clothing - i.e. a high-value manufacturing sector - can take place. This is particularly relevant to recent discussion and debate in academic and policy-making circles concerning the survival of the clothing manufacture industry in developed industrialised countries. Design/methodology/approach - Using situated learning theory (SLT) as the major analytical lens, this case study examines an episode of entrepreneurial action relating to diversification into a high-value manufacturing sector. It is considered on instrumentality grounds, revealing wider tendencies in the management of knowledge and capabilities requisite for effective entrepreneurial action of this kind. Findings - Boundary events, brokers, boundary objects, membership structures and inclusive participation that addresses power asymmetries are found to be crucial organisational design elements, enabling the development of inter- and intracommunal capacities. These together constitute a dynamic learning capability, which underpins entrepreneurial action, such as diversification into high-value manufacturing sectors. Originality/value - Through a refinement of SLT in the context of entrepreneurial action, the paper contributes to an advancement of a substantive theory of managing technological knowledge and capabilities for effective diversification into high-value manufacturing sectors. Copyright © 2014 Emerald Group Publishing Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quest for sustainable sources of fuels and chemicals to meet the demands of a rapidly rising global population represents one of this century's grand challenges. Biomass offers the most readily implemented, and low cost, solution for transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. Chemical processing of such biomass-derived building blocks requires catalysts compatible with hydrophilic, bulky substrates to facilitate the selective deoxygenation of highly functional bio-molecules to their target products. This chapter addresses the challenges associated with carbohydrate utilisation as a sustainable feedstock, highlighting innovations in catalyst and process design that are needed to deliver high-value chemicals from biomass-derived building blocks. © 2014 Woodhead Publishing Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents for the first time the concept of measurement assisted assembly (MAA) and outlines the research priorities of the realisation of this concept in the industry. MAA denotes a paradigm shift in assembly for high value and complex products and encompasses the development and use of novel metrology processes for the holistic integration and capability enhancement of key assembly and ancillary processes. A complete framework for MAA is detailed showing how this can facilitate a step change in assembly process capability and efficiency for large and complex products, such as airframes, where traditional assembly processes exhibit the requirement for rectification and rework, use inflexible tooling and are largely manual, resulting in cost and cycle time pressures. The concept of MAA encompasses a range of innovativemeasurement- assisted processes which enable rapid partto- part assembly, increased use of flexible automation, traceable quality assurance and control, reduced structure weight and improved levels of precision across the dimensional scales. A full scale industrial trial of MAA technologies has been carried out on an experimental aircraft wing demonstrating the viability of the approach while studies within 140 smaller companies have highlighted the need for better adoption of existing process capability and quality control standards. The identified research priorities for MAA include the development of both frameless and tooling embedded automated metrology networks. Other research priorities relate to the development of integrated dimensional variation management, thermal compensation algorithms as well as measurement planning and inspection of algorithms linking design to measurement and process planning. © Springer-Verlag London 2013.