892 resultados para hierarchical entropy
Resumo:
Modular design is crucial to manage large-scale systems and to support the divide-and-conquer development approach. It allows hierarchical representations and, therefore, one can have a system overview, as well as observe component details. Petri nets are suitable to model concurrent systems, but lack on structuring mechanisms to support abstractions and the composition of sub-models, in particular when considering applications to embedded controllers design. In this paper we present a module construct, and an underlying high-level Petri net type, to model embedded controllers. Multiple interfaces can be declared in a module, thus, different instances of the same module can be used in different situations. The interface is a subset of the module nodes, through which the communication with the environment is made. Module places can be annotated with a generic type, overridden with a concrete type at instance level, and constants declared in a module may have a new value in each instance.
Resumo:
Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.
Resumo:
For an interval map, the poles of the Artin-Mazur zeta function provide topological invariants which are closely connected to topological entropy. It is known that for a time-periodic nonautonomous dynamical system F with period p, the p-th power [zeta(F) (z)](p) of its zeta function is meromorphic in the unit disk. Unlike in the autonomous case, where the zeta function zeta(f)(z) only has poles in the unit disk, in the p-periodic nonautonomous case [zeta(F)(z)](p) may have zeros. In this paper we introduce the concept of spectral invariants of p-periodic nonautonomous discrete dynamical systems and study the role played by the zeros of [zeta(F)(z)](p) in this context. As we will see, these zeros play an important role in the spectral classification of these systems.
Resumo:
The game of football demands new computational approaches to measure individual and collective performance. Understanding the phenomena involved in the game may foster the identification of strengths and weaknesses, not only of each player, but also of the whole team. The development of assertive quantitative methodologies constitutes a key element in sports training. In football, the predictability and stability inherent in the motion of a given player may be seen as one of the most important concepts to fully characterise the variability of the whole team. This paper characterises the predictability and stability levels of players during an official football match. A Fractional Calculus (FC) approach to define a player’s trajectory. By applying FC, one can benefit from newly considered modeling perspectives, such as the fractional coefficient, to estimate a player’s predictability and stability. This paper also formulates the concept of attraction domain, related to the tactical region of each player, inspired by stability theory principles. To compare the variability inherent in the player’s process variables (e.g., distance covered) and to assess his predictability and stability, entropy measures are considered. Experimental results suggest that the most predictable player is the goalkeeper while, conversely, the most unpredictable players are the midfielders. We also conclude that, despite his predictability, the goalkeeper is the most unstable player, while lateral defenders are the most stable during the match.
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Arquiteturas, Sistemas e Redes
Resumo:
Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.
Resumo:
The main result of this work is a new criterion for the formation of good clusters in a graph. This criterion uses a new dynamical invariant, the performance of a clustering, that characterizes the quality of the formation of clusters. We prove that the growth of the dynamical invariant, the network topological entropy, has the effect of worsening the quality of a clustering, in a process of cluster formation by the successive removal of edges. Several examples of clustering on the same network are presented to compare the behavior of other parameters such as network topological entropy, conductance, coefficient of clustering and performance of a clustering with the number of edges in a process of clustering by successive removal.
Resumo:
Dissertation presented at Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia in fulfilment of the requirements for the Masters degree in Mathematics and Applications, specialization in Actuarial Sciences, Statistics and Operations Research
Resumo:
Esta dissertação visa o estudo da influência da cultura organizacional no desempenho financeiro das organizações. Nesse contexto, procuramos analisar qual a cultura predominante das organizações, de forma a estabelecer posteriormente uma relação entre a cultura e o desempenho das empresas. Para isso a metodologia seguida foi a realização de um inquérito por questionário a empresas da região Douro de Portugal no sentido de obter, através de uma adaptação ao instrumento desenvolvido por Cameron e Quinn (2006), a cultura predominante da empresa, os indicadores financeiros necessários ao nosso estudo assim como, uma caracterização da amostra recolhida. Para análise e tratamento dos dados recolhidos através do inquérito por questionário foi utilizada a ferramenta estatística SPSS que nos permitiu retirar ilações sobre as características da amostra, assim como sobre a relação existente entre cultura organizacional e desempenho financeiro, esta relação foi avaliada através de testes de correlação e regressão linear múltipla. Os resultados sugerem que as variáveis culturais, cultura adocrática, mercado e hierárquica e o número de colaboradores explicam em cerca de 20% o resultado líquido ajustado. Também se verificou um efeito positivo da cultura adocrática e de mercado, embora o efeito da cultura de mercado seja mais forte que o da adocrática, e o efeito negativo da cultura hierárquica, ainda que estes resultados não sejam estatisticamente significativos. Não existem evidências que os tipos de cultura analisados (adocrática, de mercado e hierárquica) estão significativamente associados ao desempenho financeiro, avaliado pelos resultados líquidos ajustados, das empresas analisadas, quer pelos testes de correlação quer pelos resultados da estimação do modelo de regressão linear múltipla.
Resumo:
This study aims to analyze which determinants predict frailty in general and each frailty domain (physical, psychological, and social), considering the integral conceptual model of frailty, and particularly to examine the contribution of medication in this prediction. A cross-sectional study was designed using a non-probabilistic sample of 252 community-dwelling elderly from three Portuguese cities. Frailty and determinants of frailty were assessed with the Tilburg Frailty Indicator. The amount and type of different daily-consumed medication were also examined. Hierarchical regression analysis were conducted. The mean age of the participants was 79.2 years (±7.3), and most of them were women (75.8%), widowed (55.6%) and with a low educational level (0–4 years: 63.9%). In this study, determinants explained 46% of the variance of total frailty, and 39.8, 25.3, and 27.7% of physical, psychological, and social frailty respectively. Age, gender, income, death of a loved one in the past year, lifestyle, satisfaction with living environment and self-reported comorbidity predicted total frailty, while each frailty domain was associated with a different set of determinants. The number of daily-consumed drugs was independently associated with physical frailty, and the consumption of medication for the cardiovascular system and for the blood and blood-forming organs explained part of the variance of total and physical frailty. The adverse effects of polymedication and its direct link with the level of comorbidities could explain the independent contribution of the amount of prescribed drugs to frailty prediction. On the other hand, findings in regard to medication type provide further evidence of the association of frailty with cardiovascular risk. In the present study, a significant part of frailty was predicted, and the different contributions of each determinant to frailty domains highlight the relevance of the integral model of frailty. The added value of a simple assessment of medication was considerable, and it should be taken into account for effective identification of frailty.
Resumo:
Artigo científico disponível actualmente em Early View (Online Version of Record published before inclusion in an issue)
Resumo:
In this work, cluster analysis is applied to a real dataset of biological features of several Portuguese reservoirs. All the statistical analysis is done using R statistical software. Several metrics and methods were explored, as well as the combination of Euclidean metric and the hierarchical Ward method. Although it did not present the best combination in terms of internal and stability validation, it was still a good solution and presented good results in terms of interpretation of the problem at hand.