932 resultados para heterogeneous polymerization
Resumo:
An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.
Resumo:
To simplify computer management, several system administrators are adopting advanced techniques to manage software configuration on grids, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. This paper discusses the feasibility of a distributed virtual machine environment, named Flexlab: a new approach for computer management that combines virtualization and distributed system architectures as the basis of a management system. Flexlab is able to extend the coverage of a computer management solution beyond client operating system limitations and also offers a convenient hardware abstraction, decoupling software and hardware, simplifying computer management. The results obtained in this work indicate that FlexLab is able to overcome the limitations imposed by the coupling between software and hardware, simplifying the management of homogeneous and heterogeneous grids. © 2009 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AIM: This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). METHODS: Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. RESULTS: The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). CONCLUSION: QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.
Resumo:
In this paper was proposed the development of an heterogeneous system using the microcontroller (AT90CANI28) where the protocol model CAN and the standard IEEE 802.15.4 are connected. This module is able to manage and monitor sensors and actuators using CAN and, through the wireless standard 802.15.4, communicate with the other network modules. © 2011 IEEE.
Resumo:
Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10 -1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Purpose: Adhesive cementation is an important step for restorations made of feldspathic ceramic as it increases the strength of such materials. Incorrect selection of the adhesive resin and the resin cement to adhere to the ceramic surface and their durability against aging can affect the adhesion between these materials and the clinical performance. This study evaluated the effect of adhesive resins with different pHs, resin cements with different polymerization modes, and aging on the bond strength to feldspathic ceramic. Materials and Methods: One surface of feldspathic ceramic blocks (VM7) (N = 90) (6.4 × 6.4 × 4.8 mm3) was conditioned with 10% hydrofluoric acid for 20 seconds, washed/dried, and silanized. Three adhesive resins (Scotchbond Multi-Purpose Plus [SBMP], pH: 5.6; Single Bond [SB], pH: 3.4; and Prime&Bond NT [NT], pH: 1.7) were applied on the ceramic surfaces (n = 30 per adhesive). For each adhesive group, three resin cements with different polymerization modes were applied (n = 10 per cement): photo-polymerized (Variolink II base), dual polymerized (Variolink II base + catalyst), and chemically polymerized (C&B). The bonded ceramic blocks were stored in water (37°C) for 24 hours and sectioned to produce beam specimens (cross-sectional bonded area: 1 ± 0.1 mm2). The beams of each block were randomly divided into two conditions: Dry, microtensile test immediately after cutting; TC, test was performed after thermocycling (12,000×, 5°C to 55°C) and water storage at 37°C for 150 days. Considering the three factors of the study (adhesive [3 levels], resin cement [3 levels], aging [2 levels]), 18 groups were studied. The microtensile bond strength data were analyzed using 3-way ANOVA and Tukey's post hoc test (α= 0.05). Results: Adhesive resin type (p < 0.001) and the resin cement affected the mean bond strength (p= 0.0003) (3-way ANOVA). The NT adhesive associated with the chemically polymerized resin cement in both dry (8.8 ± 6.8 MPa) and aged conditions (6.9 ± 5.9 MPa) presented statistically lower bond strength results, while the SBMP adhesive resin, regardless of the resin cement type, presented the highest results (15.4 to 18.5 and 14.3 to 18.9 MPa) in both dry and aged conditions, respectively (Tukey's test). Conclusion: Application of a low-pH adhesive resin onto a hydrofluoric acid etched and silanized feldspathic ceramic surface in combination with chemically polymerized resin cement did not deliver favorable results. The use of adhesive resin with high pH could be clinically advised for the photo-, dual-, and chemically polymerized resin cements tested. © 2012 by the American College of Prosthodontists.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This investigation reports the first application of admicellar polymerization to cellulose nanofibers in the form of bacterial cellulose, microfibrillated cellulose, and cellulose nanowhiskers using styrene and ethyl acrylate. The success of this physical sleeving was assessed by SEM, FTIR, and contact angle measurements, providing an original and simple approach to the modification of cellulose nanofibers in their pristine aqueous environment. © 2013 The Authors. Published by Elsevier Inc.
Resumo:
This paper presents simulation results of the DNP3 communication protocol over a TCP/IP network, for Smart Grid applications. The simulation was performed using the NS-2 network simulator. This study aimed to use the simulation to verify the performance of the DNP3 protocol in a heterogeneous LAN. Analyzing the results it was possible to verify that the DNP3 over a heterogeneous traffic network, with communication channel capacity between 60 and 85 percent, it works well with low packet loss and low delay, however, with traffic values upper 85 percent, the DNP3 usage becomes unfeasible because the information lost, re-transmissions and latency are significantly increased. © 2013 IEEE.
Resumo:
Inherited resistance to activated protein C caused by the factor V Leiden (FVL) mutation is the most common genetic cause of venous thrombosis yet described, being found in 20-60% of patients with venous thrombophilia. A relationship between the FVL mutation and an increased predisposition to arterial thrombosis in young women was recently reported. We assessed the prevalence of the FVL mutation in 440 individuals (880 chromosomes) belonging to four different ethnic groups: Caucasians, African Blacks, Asians and Amerindians. PCR amplification followed by MnlI digestion was employed to define the genotype. The FVL mutation was found in a heterozygous state in four out of 152 Whites (2.6%), one out of 151 Amerindians (0.6%), and was absent among 97 African Blacks and 40 Asians. Our results confirm that FVL has a heterogeneous distribution in different human populations, a fact that may contribute to geographic and ethnic differences in the prevalence of thrombotic diseases. In addition, these data may be helpful in decisions regarding the usefulness of screening for the FVL mutation in subjects at risk for thrombosis.