982 resultados para gravimetric inversion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on fine structural interpretation on seismic profiles of buried-hills in Huanghua depression, structural interpretation and balanced cross-section restoration of regional seismic profiles, drawing structural maps of main seismic interfaces, residual strata distribution of different ages in the Bohai Bay region and structural survey in the western Shandong uplifted area and the intracontinental orogeny of Yanshan mountain, the paper has studied pre-tertiary structural styles and tectonic evolution of the Bohai Bay region. There mainly develop 5 types of pre-tertiary structural style that are extension structure, compression structure, strike-slip structure, negative inversion structure and sliding structure in the Bohai Bay region. Among these 5 types of structural style, extension structure develops detachment fault and its controlling fault terrain structure and fault break slop; compression structure develops reverted fold, fault propagation fold, fault bent fold, imbricate thrust structure and triangle zone; strike-slip structure develops positive flower structure, negative flower structure, en-echelon structure and brush structure; negative reversion structure develops Indosinian compression and Yanshanian extension negative reversion structure, late Yanshanian compression and Cenozoic extension negative reversion structure; sliding structure develops interlayer sliding structure and detachment structure. According to Cangdong fault of SN direction, Zhangjiakou – Penglai fault and Qihe – Guangrao fault of NWW direction, the Bohai Bay region can be divided into 6 sub-regions in which structural direction and style is different from each other. Structural maps of bottom boundary of Cenozoic and upper Paleozoic manifest that main NNE structural direction is formed from late Yanshanian to Himalayan movement and minor NWW structural direction and a string of area more than 8000m are mainly suggest that Indosinian tectonic pattern strongly influence on Yanshanian and Himalayan movement. Residual strata distribution characteristics of middle to upper Neoproterozoic in the Bohai Bay region manifest that middle- to neo- aulacogen position may be corresponding to late Mesozoic uplifted zone. Residual Paleozoic distribution characteristics of main ENN suggest that structural alteration should be resulted from late Yanshanian to Himalayan movement while which of minor NWW structures suggest that deeper structure should restrict shallower structure. Structural patterns of main EW fold direction in the Bohai Bay region and thrust structure in eastern part are formed late Triassic in studied area. Granite magma intrusion of early to middle Jurassic mainly develops Yanshan mountain zone. Late Mesozoic rifting basins of NEE direction are widely distributed in the Bohai Bay region and granite magma intrusions are mainly distributed in Tancheng – Rongcheng zone. Mesozoic structural evolution in the Bohai Bay region is related to scissor convergent from east to west between North China plate and Yangtze plate and gradually reinforcing of the west circum-pacific tectonic tract while basin and range province of late Jurassic and early Cretaceous may be mainly related to lithospheric thinning of North China craton in late Mesozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the Oil field exploration and exploitation, the problem of supervention and enhaning combination gas recovery was faced.then proposing new and higher demands to precision of seismic data. On the basis of studying exploration status,resource potential,and quality of 3D seismic data to internal representative mature Oil field, taking shengli field ken71 zone as study object, this paper takes advantage of high-density 3D seismic technique to solving the complex geologic problem in exploration and development of mature region, deep into researching the acquisition, processing of high-density 3D seismic data. This disseration study the function of routine 3D seismic, high-density 3D seismic, 3D VSP seismic,and multi-wave multi-component seismic to solving the geologic problem in exploration and development of mature region,particular introduce the advantage and shortage of high-density 3D seismic exploration, put forward the integrated study method of giving priority to high-density 3D seismic and combining other seismic data in enhancing exploration accuracy of mature region. On the basis of detailedly studying acquisition method of high-density 3D seismic and 3D VSP seismic,aming at developing physical simulation and numeical simulation to designing and optimizing observation system. Optimizing “four combination” whole acquisition method of acquisition of well with ground seimic and “three synchron”technique, realizing acquisition of combining P-wave with S-wave, acquisition of combining digit geophone with simulation geophone, acquisition of 3D VSP seismic with ground seimic, acquisition of combining interborehole seismic,implementing synchron acceptance of aboveground equipment and downhole instrument, common use and synchron acceptance of 3D VSP and ground shots, synchron acquisition of high-density P-wave and high-density multi-wave, achieve high quality magnanimity seismic data. On the basis of detailedly analysising the simulation geophone data of high-density acquisition ,adopting pertinency processing technique to protecting amplitude,studying the justice matching of S/N and resolution to improving resolution of seismic profile ,using poststack series connection migration,prestack time migration and prestack depth migration to putting up high precision imaging,gained reliable high resolution data.At the same time carrying along high accuracy exploration to high-density digit geophone data, obtaining good improve in its resolution, fidelity, break point clear degree, interbed information, formation characteristics and so on.Comparing processing results ,we may see simulation geophone high-density acquisition and high precision imaging can enhancing resolution, high-density seismic basing on digit geophone can better solve subsurface geology problem. At the same time, fine processing converted wave of synchron acquisition and 3D VSP seismic data,acquiring good result. On the basis of high-density seismic data acquisition and high-density seismic data processing, carry through high precision structure interpretation and inversion, and preliminary interpretation analysis to 3D VSP seismic data and multi-wave multi-component seismic data. High precision interpretation indicates after high resolution processing ,structural diagram obtaining from high-density seismic data better accord with true geoligy situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proven by the petroleum exploration activities, the karsts-fissure reservoir in carbonate rocks is significant to find out the large scale oil & gas field. They are made up of the four reservoir types: karsts-cave, karsts-crack, crack-cave and fracture-pore-cave. Each reservoir space and each reservoir bed has different features of reservoir heterogeneity and small scale of pore-crack-cave. The fracture-cave reservoir in carbonate rocks is characteristic by multi-types and long oiliness well. The reservoir shape is controlled by the irregular pore-crack-cave. The development level of fracture and karst-cave is the key element of hydrocarbon enriching, high productivity and stable production. However, most of Carbonate formation are buried deeply and the signal-ration-noise of seismic reflection are very low. It is reason why the fracture-cave reservoir are difficult to be predicted effectively. In terms of surveyed and studied lots of the former research outcome, The author applied the methods of synthetical reservoir geophysical prediction from two ways including macrosopic and microcomic technics in terms of the reservoir-cap condition, geophysics and geology feature and difficulty of prediction in carbonate rocks. It is guiden by the new ideas of stratigraphy, sedimentology, sedimentography, reservoir geology and karst geology. The geophysics technology is key technics. In aspects of macroscopic studies, starting off the three efficiencies of controlling the reservoir distribution including sedimental facies, karst and fracture, by means of comprehensive utilization of geology, geophysics, boring well and well log, the study of reservoir features and karst inside story are developed in terms of data of individual well and multiple well. Through establishing the carbonate deposition model, karstic model and fracture model, the macro-distribution laws of carbonatite are carried out by the study of coherence analysis, seismic reflection feature analysis and palaeotectonics analysis. In aspects of microcosmic studies, starting off analysis in reservoir geophysical response feature of fracture and karst-cave model according to guidance of the macroscopic geological model in carbonate reservoir, the methods of the carbonate reservoir prediction are developed by comprehensively utilization of seismic multi-attribution intersection analysis, seismic inversion restricted by log, seismic discontinuity analysis, seimic spectrum attenuation gradient, moniliform reflection feature analysis and multiparameter karst reservoir appraisement.Through application of carbonate reservoir synthetical geophysics prediction, the author r successfully develops the beneficial reservoir distribution province in Ordovician of Katake block 1in middle Tarim basin. The fracture-cave reservoir distributions are delineated. The prospect direction and favorable aims are demonstrated. There are a set of carbonate reservoir prediction methods in middle Tarim basin. It is the favorable basic technique in predicting reservoir of the Ordovician carbonate in middle Tarim. Proven by exploration drilling, the favorable region of moniliform reflection fracture and pore-cave and cave-fracture in lower-middle Ordovician are coincidence with the region of hydrocarbon show. It’s indicated that the reservoir prediction methods described in the study of Ordovician carbonate formation are feasible practicably.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the complex structure areas, velocity field building and structure mapping are important for seismic exploration. With the development of seismic exploration, the methods of structure mapping, reservoir prediction and reservoir description all require high precious velocity field. And more accurate depth-structure maps are required for well site design. Aiming at the problems and defects in velocity analysis and structure mapping in oil seismic exploration, the paper which is based on the studies of real data in several areas combines the theories with practical application, and analyzes the precision and applicability of several methods of velocity model building. After that, the following methods are mainly studied: the coherence inversion methods based on the pre-stack CMP gathers or stacking velocity; the interval velocity inversion methods constrained by multi-well; the Random Simulation method; 3D Image Ray Map Migration method and the structure mapping in floating datum and in fixed datum, and then we conclude the method of building high precious seismic velocity field and structure mapping with variable velocity. Firstly, the paper analyses the distributing rule of the velocity variation in the areas with complex structures in the northwest of China, then points out that velocity is a crucial factor which influences the precision of structure mapping, and the velocity variations have something to do with the shapes of the structures, the variety of lithology and so on. The key point of improving the precision of seismic velocity field is to obtain a structure mapping with high precision. We also describe the range and conditions of these methods. Secondly, by comparing many popular methods of velocity model building, we propose a new method in the use of velocity model building. The new method is more effective in velocity model building under every kind of complex condition and is worthy of spreading. At last, the paper fingers out that it is a system engineering to study variable velocity mapping in every kind of complex structure areas. Every step of the work can affect the final results. So it is important to build high efficient and practical velocity model and the flows of mapping processing. The paper builds the flows and gives some examples. The method has been applied in more than ten exploring surveys. The application proves that this method could bring good effect on researching on low-amplitude trap, reservoir prediction, reservoir description and the integrated research of oil&gas geology. Keywords: structure mapping velocity model building complex structure variable velocity media

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the continuously proceeding of petroleum exploratory development in China, exploratory development becomes more and more difficult. For increasing reserve volume and production, lithologic hydrocarbon reservoir has been the most workable, potential and universality exploration targets. In the past, Dagang Oil Field use the complicated fault reservoir theory as the guide, develop and form a suit of matching construction and instrument in prospecting complicated fault reservoir that reach top of exploration industry in China. But the research of lithologic hydrocarbon reservoir is not much, which affects the exploitation progress of lithologic hydrocarbon reservoir. In this thesis, is object, through the depth study of lithologic deposition in Shasan segment of Zhouqingzhuang Oil Field, a suit of holographic fine reservoir bed forecasting techniques is built up and finally gets following main results: 1. Applying geology, seism, drilling, logging and other information to sensitivity preferences, geological model, inversion and integrated stratum evaluation, realizing the method and flow of refined multi-information stratum forecast. 2. Built up a full three dimensional fine structural interpretation method: in view of r problem of accurately demarcating 90% inclined well, propose a inclined well air space demarcating method, make bed demarcating more exactly; in view of problem of faults demarcating and combination in seismic interpretation, propose a computational method of seismic interference based on wavelet translation, make identify the fault in different level more dependable and reasonable; for exactly identifying structural attitude, propose a velocity modeling method under multi-well restriction, make structural attitude closer to the facts. 3. Built up a high accuracy reservoir bed inversion method: in view of problem in exactly identifying reservoir and nonreservoir with conventional wave impedance inversion method in this place, propose a reservoir log response characteristic analysis and sensible log parameter inversion method. ①analysis log response of reservoir and nonreservoir in region of interest, make definite the most sensible log parameter in identifying reservoir and nonreservoir in this region; ②make sensible log parameter inversion based on wave impedance inversion, to improve inversion accuracy, the thickness of recognizable reservoir bed reach 4-5m. 4. Built up a 4-D reservoir forcasting circuit: in view of difficulty that in lithologic hydrocarbon reservoir making reservoir space characteristic clear by using structural map and reservoir forecasting techniques once only, propose a 4-D reservoir forcasting circuit. In other words, based on development conceptual design, forcast reservoir of different time, namely multiple 3D reservoir forcasting in time queue, each time the accuracy degree of reservoir forcasting is improved since apply the new well material, thereby achieve high quality and highly efficient in exploratory development. During exploratory development lithologic depositin in Shasan segment of Zhouqingzhuang Oil Field, there are thirteen wells get 100% success rate, which sufficiently proves that this suit of method is scientific and effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practice of geophysical prospecting shows us the complex interior earth. The studies of the complexity play an important role and practical guide for the subsurface structure. At present, the complexity of the earth mainly means lateral and vertical homogeneity, anisotropy and non-linear quality. And the anisotropy and non-linear media studies become the frontier in seismology and exploration seismology. This paper summarizes the development of complexities and presents the forward and inverse in the non-linear and anisotropic media. Firstly, the paper introduces the theory of seismic wave propagation in the non-linear and anisotropic media, the theoretical basis for simulation and inversion research. Secondly, high quality numerical simulation method with little dispersion has been developed to investigate the influence of complexity including anisotropy and non-linear multi-component seismograms. Because most real data in seismology have a single component, we developed two aspects work on anisotropic multi-component imaging. One is prestack reflection migration. The result show that distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation. Moreover, image quality will be improved greatly after considering anisotropy in subsurface layers. The other one is the we take advantage of multi-component data to inversion of the anisotropic parameters jointly seimic reflection travel time and polarization information. Based on these research works, we get the following results: 1.Combing numerical simulation, systematical studies indicate that anisotropy and non-linear seismograms characters are significant to detect cracked belts in the earth and to understand deformation field and mechanism. 2.Based on anisotropic media models, we developed an efficient prestack migration method for subsurface structure and different observation methods seismic data, which improving the imaging quality with VSP, seismograms and real data. 3.Jointly seismic inversion combining seismic anisotropic reflection traveltimes and polarizations data show that the complete wrong inversion and the following explanation will be resulted by ignoring anisotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Static correction is one of the indispensable steps in the conventional onshore seismic data processing, particularly in the western part of China; it is theoretically and practically significant to resolve the issue of static correction. Conventional refraction static correction is put forward under the assumption that layered medium is horizontal and evenly distributed. The complicated nature of the near surface from western part of China is far from the assumption. Therefore, the essential way to resolve the static correction problem from the complex area is to develop a new theory. In this paper, a high-precision non-linear first arrival tomography is applied to solve the problem, it moved beyond the conventional refraction algorithm based on the layered medium and can be used to modeling the complex near surface. Some of the new and creative work done is as follows: One. In the process of first arrival tomographic image modeling, a fast high-order step algorithm is used to calculate the travel time for first arrival and ray path and various factors concerning the fast step ray tracing algorithm is analyzed. Then the second-order and third-order differential format is applied to the step algorithm which greatly increased the calculation precision of the ray tracing and there is no constraint to the velocity distribution from the complex areas. This method has very strong adaptability and it can meet the needs of great velocity variation from the complicated areas. Based on the numerical calculation, a fast high-order step is a fast, non-conditional and stable high-precision tomographic modeling algorithm. Two, in the tomographic inversion, due to the uneven fold coverage and insufficient information, the inversion result is unstable and less reliable. In the paper, wavelet transform is applied to the tomographic inversion which has achieved a good result. Based on the result of the inversion from the real data, wavelet tomographic inversion has increased the reliability and stability of the inversion. Three. Apply the constrained high-precision wavelet tomographic image to the static correction processing from the complex area. During tomographic imaging, by using uphole survey, refraction shooting or other weathering layer method, weathering layer can be identified before the image. Because the group interval for the shot first arrival is relatively big, there is a lack of precision for the near surface inversion. In this paper, an inversion method of the layer constraint and well constraint is put forward, which can be used to compensate the shallow velocity of the inversion for the shot first arrival and increase the precision of the tomographic inversion. Key words: Tomography ,Fast marching method,Wavelet transform, Static corrections, First break

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the example of Damintun Depression, Liaohe Oilfield, different methods to study fracture distribution were propsosed, i.e. combined crop, core, log, with seismic attribute and paleo-stress field to predict fractural reservoir. The following conclusions are drawn: 1. Secondary fracture and dissolution pore are the main reservoir space of fractured reservoir in Damintun buried hills through observing more than 270 meters core in 27 wells. Among them, structural fracture is the main reservoir spcace in Archaean metamorphism whose main mineral are silicates, while dissolution pore and structural fracture are the main reservoir space in Protozoic carbonate which has been proved with high dissolution. Structural fracture is not only the main reservoir space but also the influent path. 2. Actual core observation and log identification proved that the formation of buried hills have the following zone: weathering crust, fracturaed zone and compact zone, among which the weathering crust and fractured zone are the main reservoir. 3. The mineralogical component of rock is the inner factor and the tectonization is the outer factor, which control the development of structural fracture. The content of brittle material in rock influences the development of structural fracture. Dissolution, chemical eluviations, weathering and fill-up affect the development of structural fracture. 4. Basement faults control the distribution of structural fracture in Damintun Depression. The trend of fracture is consistent with that of faults and there is often large-scale fractural zone around faults. 5. Based on log response, the fracture is identified with core observation, imaging well log and ANN, which can provide geological basis for optimized perforation. 6. The methods for predicting fracture with structure restoration, seismic inversion and paleo-stress simulation aiming at different types of buried-hills reservoir, and then the spatial distribution of the fracture and density is obtained, which can provide geological basis for well site adjustment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In practice,many fracture reservoir was found,which has giant potential for exporation. For example,in limestone fracture reservoir,igneous rock fracture reservoir and shale fracture reservoir ,there are high yield oil wells found. The fracture reservoir has strong anisotropy and is very difficult to explore and produce.Since 1990’s,the techniques that use structure information and P-WAVE seismic attributes to detect fracture developed very rapidly,include stress and strain analysis,using amplitude,interval velocity,time-difference,azimuthal AVO analysis etc. Based on research and develop these advanced techniques of fracture detect,this paper selected two typical fracture reservoir as target area,according to the characters of research area,selected different techniques to pridect the fracture azimuth and density of target,and at last ,confirmed the favored area. This paper includes six parts:the first chapter mainly addresses the domestic and international research actuality about the fracture prediction and the evolement in ShengLi oil field,then according to the temporal exploration requirement,a research route was established; Based on the close relationship between structural fracture and the geotectonic movement and the procedure of rock distortion,the second chapter research the structural fracture predicting technique which is realized by computing the strain in every geotectonic movement ,which is by use of the forward and inversion of the growing history of structure; The third chapter discussed many kind of traditional techniques for fracture reservoir prediction,and point out their disadvantages.then research and develop the coherence volume computing technique which can distinguish from faults,the seismic wave absorbing technique,and other fracture predicting technique which is by use of seismic attributes ,such as azimuthal AVO FVO etc; The fourth chapter first establish the geological and petrophysical model by use of the existed log and drill well information, then research the variation of amplitude and seismic wave which is caused by fractures.based on it , the fracture predicting technique which is by use of variation of azimuthal impedance is researched;The fifth chapter is a case study,it selects shale fracture reservoir in LuoJia area as target,selects several kind of techniques to apply ,at last ,the fracture distribution of target reservoir and favored area were gotten;the sixth chapter is another case study,it selects limestone fracture reservoir in BoShen6 buried hill as target,selects several kind of techniques to apply,similarly favored area were gotten. Based on deeply research and development of the new techniques for fracture reservoir exploration, This paper selects two fracture reservoirs the most typical in ShengLi as targets to be applied ,good results show up a good application way ,which can be used for reference for future fracture exploration,and it can bring materially economic and social benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, taking Madong district of Huanghua depression as a case, based on the theory of sequence stratigraphy, sedimentology, reservoir geology and geophysics, according to core analysis, seismic attribute analysis, logging constrained inversion, multi-data correlation of strata, reservoir modeling, etc. the lower and middle first member of Shahejie formation of the study area was forecasted and evaluated. As a result, a number of reservoir prediction and remaining oil distribution methods suitable to oil exploitation of gravity flow channel reservoir are presented. Scientific foundation is provided to the next adjustment of development program and exploitation of the remaining oil. According to high resolution sequence stratigraphy theory, precise stratigraphic framework was founded, the facies types and facies distribution were studied under the control of stratigraphic framework, the technologies of seismic attribute abstraction and logging constrained inversion. Result shows that gravity flow channel, as the main facies, developed in the rising period of base-level cycle, and it was formed during the phase of contemporaneous fault growth. As the channel extends, channel width was gradually widened but thickness thined. The single channels were in possession of a great variety of integrated modes, such as isolated, branching off, merging and paralleling, forming a kind of sand-mud interblending complex sedimentary units. Reservoir quality differs greatly in vertical and horizontal direction, and sedimentary microfacies is main controlling factor of the reservoir quality. In major channel, deposition thickness is great, and petrophysical property is well. While in marginal channel, reservoir is thinner, and petrophysical property is unfavorable. Structure and reservoir quality are main factors which control the oil and gas distribution in the study area. On the basis of the research about the reservoir quality, internal, planar and 3-D reservoir heterogeneities are characterized, and the reservoir quality was sorted rationally. At last, based on the research of reservoir numerical simulation of key well group, combined with reservoir performance analysis and geological analysis above, remaining oil distribution patterns controlled by internal rhythm of gravity flow channel were set up. Through this research, a facies-restrained reservoir prediction method integrating multi-information was presented, and potential orientation of remaining oil distribution in gravity flow channel reservoir is clarified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, because of high petroleum consumption of our country, society steady development and difficulty increase in new resources exploration, deep exploitation of the existing oilfield is needed. More delicate reservoir imaging and description, such as thin layer identification, interlayer exploitation monitoring, subtle structure imaging, reservoir anisotropy recognition, can provide more detail evidence for new development adjustment scheme and enhanced oil recovery. Now, the people have already realized the 3D VSP technique more effective than the general methods in solving these aspects. But VSP technique especially 3D VSP develop slowly due to some reasons. Carrying out the research of VSP technique, it will be very useful to the EOR service. 3D VSP techniques include acquisition、data processing and interpretation. In this paper, the author carried out some researches around acquisition and processing. The key point of acquisition is the survey design, it is critical to the quality of the data and it will influence the reservoir recognition as follows. The author did detailed researches on the layout pattern of shot point and geophone. Some attributes relate to survey design such as reflectivity, incidence angle, observation area, reflection points distribution, fold, minimum well source distance, azimuth angle and so on are studied seriously. In this geometry design of 3D-VSP exploration in deviated wells, the main problems to be solved are: determining the center position of shots distribution, the effect of shots missing on coverage areas and coverage times,locating the shots and receivers of multi-wells. Through simulating and analyzing, the above problems are discussed and some beneficial conclusions are drawn. These will provide valuable references to actual survey design. In data processing, researches emphasize on those relatively key techniques such as wavefield separation, VSP-CDP imaging, the author carried out deep researches around these two aspects. As a result, variant apparent slowness wavefield separation method developed in this article suit the underground variant velocity field and make wavefield separation well, it can overcome reflection bending shortage aroused by conventional imaging method. The attenuateion range of underground seismic wave is very important for amplitude compensation and oil/gas identification.In this paper, seismic wave attenuateion mechanism is studied by 3D-VSP simulateion and Q-inversion technique. By testing with seismic data, the method of VSP data attenuateion and relationship of attenuateion attribute variant with depth is researched. Also the software of survey design and data processing is developed, it fill the gap of VSP area in our country. The technique developed applied successfully in SZXX-A Oilfield、QKYY-B Oilfield、A area and B area. The good results show that this research is valuable, and it is meaningful to the VSP technique development and application of offshore oil industry and other areas in our country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the development of oil and gas field exploration, it becomes harder to search new reserves. So a higher demand of seismic exploration comes up. Now 3C3D seismic exploration technology has been applied in petroleum exploration domains abroad. Comparing with the traditional P-wave exploration, the seismic attributes information which provided by 3C3D seismic exploration will increase quickly. And it can derive various combined parameters. The precision of information about lithology, porosity, fracture, oil-bearing properties, etc which estimated by above parameters was higher than that of pure P-wave exploration. These advantages mentioned above lead to fast development of 3C3D seismic technology recently. Therefore, how to apply the technology in petroleum exploration field in China, how to obtain high quality seismic data, and how to process and interpret real data, become frontier topics in geophysical field nowadays, which have important practical significance in research and application. In this paper, according to the propagation properties of P-wave and converted wave, a study of 3C3D acquisition parameters design method was completed. Main parameters included: trace interval, shot interval, maximum offset, bin size, the interval of receiving lines, the interval of shooting lines, migration aperture, maximum cross line distance, etc. Their determination principle was given. The type of 3C3D seismic exploration geometry was studied. By calculating bin attributes and analyzing parameters of geometry, some useful conclusions were drawn. With the method in this paper, real geometries for continental lithology stratum gas reservoir and fractured gas reservoir were studied and determined. In the static method of multi-wave, the near surface P-wave, S-wave parameter investigation method has been advanced, and this method has been applied for the patent successfully; the near surface P-wave, S-wave parameter investigation method and the converted refraction wave first arrival static techniques have been integrally used to improve the effectiveness of converted wave static. In the aspect of converted wave procession, the rotation of horizontal component data, the calculation of converted wave common conversion bin, the residual static of converted wave, the velocity analysis of the common conversion point (CCP), the Kirchhoff pre-stack time migration of converted wave techniques have been applied for setting up the various 3C3D seismic data processing flows based on different geologic targets, and the high quality P-wave, converted-wave profiles have been acquired in the actual data processing. In the aspect of P-wave and converted-wave comprehensive interpretation, the thoughts and methods of using zero-offset S-wave VSP data to calibrate horizon have been proposed; the method of using P-wave and S-wave amplitude ratio to predict the areas of oil and gas enrichment has been studied; the method of inversion using P-wave combined with S-wave has been studied; the various P-wave, S-wave parameters(velocity ratio, amplitude ratio, poisson ratio) have been used to predict the depth, physical properties, gas-bearing properties of reservoirs; the method of predicting the continental stratum lithology gas reservoir has been built. The above techniques have all been used in various 3D3C seismic exploration projects in China, and the better effects have been gotten. By using these techniques, the 3C3D seismic exploration level has been improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exploration and development of natural gas in the north of Ordos basin have been one important part in China’s energy stratagem. Reservoir in upper Palaeozoic group is of lithological trap and its prediction is a crux in a series of works. Based on foregoing seismic reservoir prediction, seismic data are re-processed with some optical methods and pre-stack information is used in corresponding inversions. Through the application of diverse methods, a series of techniques for reservoir prediction come into being. Several results are achieved as flowing: 1. A set of log processing and interpretation methods is developed. Porosity, permeability and gas saturation models are rebuilt. 2. Based on the petro-physics analysis of reservoirs in upper Palaeozoic group, the equations about lithology, property, hydrocarbon and elastic parameters are established. 3. Forward modeling based on elastic wave theory is first applied in the study area and increases the resolution of modeling results. 4. A series of techniques such as pre-stack time migration and others are combined to improve the data quality. 5. Pre-stack seismic inversion is first employed in the north of Ordos Basin and brings the results of EI, P-impedance, S-impedance and other elastic parameters. 6. In post-stack inversion, logs indicating reservoir parameters are rebuilt and boost the resolution of lithology inversion. 7. Amplitude, coherence, frequency-discomposed amplitude, waveform and other sensitive attributes are extracted to describe sands distribution. Seismic modes standing for sands of P1x3, P1x2 are established. 8. Among 9 proposed wells, 8 wells encountered sands and became production wells. The output of DK13 amounts to 510,000 m3 per day. Keywords:the north of Ordos Basin, reservoir prediction, pre-stack inversion, post-stack inversion, seismic attributes.