911 resultados para freshwater snails


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strain of Raphidiopsis (Cyanobacteria) isolated from a fish pond in Wuhan, P. R. China was examined for its taxonomy and production of the alkaloidal hepatotoxins cylindrospermopsin (CYN) and deoxy-cylindrospermopsin (deoxy-CYN). Strain HB1 was identified as R. curvata Fritsch et Rich based on morphological examination of the laboratory culture. HB1 produced mainly deoxy-CYN at a concentration of 1.3 mg(.)g(-1) (dry ut cells) by HPLC and HPLC-MS/MS. CYN was also detected in trace amounts (0.56 mug(.)g(-1)). A mouse bioassay did not show lethal toxicity when tested at doses up to 1500 mg dry weight cells(.)kg(-1) body weight within 96 h, demonstrating that production of primarily deoxy CYN does not lead to significant mouse toxicity by strain BB I. The presence of deoxy-CYN and CYN in R curvata suggests that Raphidiopsis belongs to the Nostocaceae, but this requires confirmation by molecular systematic studies. Production of these cyanotoxins by Raphidiopsis adds another genus, in addition to Cylindrospemopsis, Aphanizomenon, and Umezakia, now known to produce this group of hepatotoxic cyanotoxins. This is also the first report from China of a CYN and deoxy-CYN producing cyanobacterium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult and preadult Dissonus manteri attached to the gills of Plectropomus leopardus cause significant pathology in the form of large hyperplastic nodules on the afferent (leading), edges of gill filaments. Nodules result from the dual actions of parasite attachment and feeding. The host response is characterized by severe epithelial hyperplasia, supplemented by fibroplasia and inflammation. Parasites attach close to the gill arch near the base of filaments. They have little effect on gill vasculature as the maxillipeds penetrate the filament superficial to the efferent filament artery and do not interfere with the blood vessels of the secondary lamellae. Tissue proliferation is limited to the wide portion of filament 'edge' epithelium in the proximal third and also does not extend to the secondary lamellae. Nodules are most numerous towards the ends of hemibranchs and are generally absent from the central regions. Leading hemibranchs bear significantly more nodules than their trailing counterparts. Of the total number of nodules, 20.5% are located on the pseudobranchs. Distribution patterns are considered to be primarily the result of D. manteri avoiding strong water currents, although this cannot explain the difference between numbers on leading and trailing hemibranchs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-Conotoxins are small disulfide rich peptides from the venoms of marine cone snails. They target specific nicotinic acetylcholine receptor (nAChR) subtypes with high affinity and potency and are therefore valuable as neurophamacological probes and potential drug leads. This article gives a general overview of the chemical and biological features of alpha -conotoxins, including their pharmacology, binding interactions and structure. A detailed analysis of recently reported three-dimensional structures from members of different subfamilies of the alpha -conotoxins, including those with 3/5, 4/3, 4/6 and 4.7 spacings of their two intracysteine loops is given. The structures are generally well defined and represent useful frameworks for the display of amino acid residues to target molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prioritizing areas for conservation requires the use of surrogates for assessing overall patterns of biodiversity. Effective surrogates will reflect general biogeographical patterns and the evolutionary processes that have given rise to these and their efficiency is likely to lie influenced by several factors, including the spatial scale of species turnover and the overall congruence of the biogeographical history. We examine patterns of surrogacy for insects, snails, one family of plants and vertebrates from rainforests of northeast Queensland, an area characterized by high endemicity and an underlying history of climate-induced vicariance. Nearly all taxa provided some level of prediction of the conservation values For others. However, despite an overall correlation of the patterns of species richness and complementarity, the efficiency of surrogacy was highly asymmetric.. snails and insects were strong predictors of conservation priorities for vertebrates, but not vice versa. These results confirm predictions that taxon surrogates can be effective in highly diverse tropical systems where there is a strong history of vicariant biogeography, but also indicate that correlated patterns for species richness and/or complementarity do not guarantee that one taxon will be efficient as a surrogate for another. In our case, the highly diverse and narrowly distributed invertebrates were more efficient as predictors than the less diverse and more broadly distributed vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reef-building corals are renowned for their brilliant colours yet the biochemical basis for the pigmentation of corals is unknown. Here, we show that these colours are due to a family of GFP-like proteins that fluoresce under ultraviolet (UV) or visible light. Pigments from ten coral species were almost identical to pocilloporin (Dove et al. 1995) being dimers or trimers with approximately 28-kDa subunits. Degenerative primers made to common N-terminal sequences yielded a complete sequence from reef-building coral cDNA, which had 19.6% amino acid identity with green fluorescent protein (GFP). Molecular modelling revealed a 'beta -can' structure, like GFP, with 11 beta -strands and a completely solvent-inaccessible fluorophore composed of the modified residues Gln-61, Tyr-62 and Gly-63. The molecular properties of pocilloporins indicate a range of functions from the conversion of high-intensity UV radiation into photosynthetically active radiation (PAR) that can be regulated by the dinoflagellate peridinin-chlorophyll-protein (PCP) complex, to the shielding of the Soret and Q(x) bands of chlorophyll a and c from scattered high-intensity light. These properties of pocilloporin support its potential role in protecting the photosynthetic machinery of the symbiotic dinoflagellates of corals under high light conditions and in enhancing the availability of photosynthetic light under shade conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic structure of six local collections of Pocillopora verrrucosa from six coral reefs in KwaZulu-Natal, South Africa, was examined using allozyme electrophoresis. The six separate reefs lie within two different reef complexes. Twenty-two enzymes were screened on five buffer systems, but only five polymorphic loci (Gpi-1, Gdh-1, Lgg-2, Lpp-1, Est-1) could be consistently resolved. No significant differences in allelic frequencies were detected among the six sites. All local collections were genotypically diverse, with evidence of only very limited clonal replication at each site. Indeed, the ratio of observed to expected genotypic diversity (mean Go:Ge=0.64 +/-0.05 SD), the ratio of observed number of genotypes to the number of individuals (mean Ng:N = 0.65 +/-0.04 SE), and deviations from the Hardy-Weinberg equilibrium indicate that sexual reproduction plays a major role in the maintenance of the populations. No genetic differentiation was found either within (FSR = 0.026 +/-0.003 SE) or between (FRT = 0.000 +/-0.001 SE) reef complexes. The homogeneity of the gene frequencies across the six reefs strongly supports the assumption that the KwaZulu-Natal reef complexes are highly connected by gene flow (Nem=44). The reefs in the southern and central reef complexes along the northern Maputaland coastline can therefore be considered part of a single population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the genetic diversity of symbiotic dinoflagellates (Symbiodinium sp.) in the widespread hermatypic coral Plesiastrea versipora from tropical/subtropical (north-eastern Australia) and temperate waters (south-eastern Australia) using restriction fragment length polymorphisms of partial 18S ribosomal DNA (rDNA), together with sequence analysis of partial 28S rDNA. This study revealed that P. versipora associates with at least two distinct genotypes of symbiotic dinoflagellates and that the presence of these genotypes varies with latitude. P. versipora colonies from subtropical and tropical waters contained symbionts belonging to Symbiodinium clade C, while P. versipora colonies at high-latitude sites contained clade B. Variability within the two groups of symbionts (clades H and C) was minimal, suggesting possible host fidelity. The geographically distinct varieties of symbionts within the tissue of this hermatypic coral are likely to be associated with algal physiological differences, which in turn may relate to changing selective pressures as a function of latitude along the eastern Australian seaboard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scleractinian coral species, Seriatopora hystrix and Acropora longicyathus, are widely distributed throughout the latitudinal range of the tropical west Pacific. These 2 coral species live in a mutually beneficial relation with symbiotic dinoflagellates (zooxanthellae), which are passed to their progeny by vertical transmission (zooxanthellate eggs or larvae) and horizontal transmission (eggs or larvae that acquire symbionts from the environment), respectively. For S. hystrix, vertical transmission might create biogeographically isolated and genetically differentiated symbiont populations because the extent of its larval migration is known to be limited. On the other hand, horizontal transmission in corals such as A. longicyathus may result in genetically connected symbiont populations, especially if its zooxanthellae taxa are widely distributed. To examine these hypotheses, symbionts were collected from colonies of S. hystrix and A. longicyathus living in the Great Barrier Reef (Australia), South China Sea (Malaysia) and East China Sea (Ryukyus Archipelago, Japan), and were examined using restriction fragment length polymorphism and sequence analysis of large and small subunit rRNA genes. Phylogenetic analysis assigned the symbionts to 1 of 3 taxonomically distinct groups, known as clades. Symbionts from Australian and Japanese S. hystrix were placed in Clade C, and Malaysian S. hystrix symbionts in the newly described Clade D. Seven of 11 Australian and all Japanese and Malaysian colonies of A. longicyathus had symbiotic dinoflagellates that also grouped with Clade C, but symbionts from the remaining Australian colonies of A. longicyathus grouped with Clade A. Analysis of molecular variance of Clade C symbionts found significant genetic variation in 1 or more geographic groups (69.8%) and to a lesser extent among populations within geographic regions (13.6%). All populations of Clade C symbionts from S. hystrix were genetically differentiated according to geographic region. Although Clade C symbionts of A. longicyathus from Japan resolved into a distinct geographic group, those from Australia and Malaysia did not and were genetically connected. We propose that these patterns of genetic connectivity correlate with differences in the dispersal range of the coral or symbiont propagules and are associated with their respective modes of symbiont transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (delta N-15) and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO3-/NO2- and PO43-, compared to NH4+ in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant delta N-15 values ranged from 10.4-19.6 parts per thousand at the site of sewage discharge to 2.9-4.5 parts per thousand at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The delta N-15 isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters. (C) 2001 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine viruses have been shown to affect phytoplankton productivity; however, there are no reports on the effect of viruses on benthic microalgae (microphytobenthos). Hence, this study investigated the effects of elevated concentrations of virus-like particles on the photosynthetic physiology and community composition of benthic microalgae and phytoplankton. Virus populations were collected near the sediment surface and concentrated by tangential flow ultrafiltration, and the concentrate was added to benthic and water column samples that were obtained along a eutrophication gradient in the Brisbane River/Moreton Bay estuary, Australia. Photosynthetic and community responses of benthic microalgae, phytoplankton and bacteria were monitored over 7 d in aquaria and in situ. Benthic microalgal communities responded to viral enrichment in both eutrophic and oligotrophic sediments. In eutrophic sediments, Euglenophytes (Euglena sp.) and bacteria decreased in abundance by 20 to 60 and 26 to 66%, respectively, from seawater controls. In oligotrophic sediments, bacteria decreased in abundance by 30 to 42% from seawater controls but the dinoflagellate Gymnodinium sp. increased in abundance by 270 to 3600% from seawater controls, The increased abundance of Gymnodinium sp. may be related to increased availability of dissolved organic matter released from lysed bacteria. Increased (140 to 190% from seawater controls) initial chlorophyll a fluorescence measured with a pulse-amplitude modulated fluorometer was observed in eutrophic benthic microalgal incubations following virus enrichment, consistent with photosystem II damage. Virus enrichment in oligotrophic water significantly stimulated carbon fixation rates, perhaps due to increased nutrient availability by bacterial lysis. The interpretation of data from virus amendment experiments is difficult due to potential interaction with unidentified bioactive compounds within seawater concentrates. However, these results show that viruses are capable of influencing microbial dynamics in sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel bloom of the surf diatom Anaulus australis Drebes et Schultz was observed in subtropical waters off Surfers' Paradise, Queensland, Australia (27 degrees 55'S; 153 degrees 23'E) in early May 2000. This is the lowest latitude in which an Anaulus australis surf diatom bloom has been reported. Nitrogen stable isotope analysis of surf diatoms may indicate anthropogenic nutrient inputs in this environment.