968 resultados para fracture mechanics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

20多年以来, 用小型试件的小冲杆实验技术来测量在役设备材料的各种力学参数已经取得了很大进展. 小冲杆实验的试样虽然还没有标准, 但一般均采用直径为3~10mm,厚度为0.1~0.5mm的圆片试样.这个方法已经用来确定材料的弹性模量、屈服强度、塑性性能、抗拉强度、断裂形态转变温度、断裂韧性、蠕变性能以及表示塑性硬化和韧性损伤的微观力学参数和黏塑性性能等各种力学性能.该方法兼具取样方便和几乎无损的优点,非常适用于那些无法取出传统试样或取样不经济的场合,因此引起科技界和工业界的关注.本文综述了小冲杆试验的测量技术及从测量数据来确定材料断裂形态转变温度、断裂韧性和主曲线的移动温度的各种计算方法研究进展.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inducement of interface fracture is crucial to the analysis of interfacial adhesion between coating and substrate. For electroplated coating/metal substrate adhering materials with strong adhesion, interface cracking and coating spalling are difficult to be induced by conventional methods. In this paper an improved bending test named as T-bend test was conducted on a model coating system, i.e. electroplated chromium on a steel substrate. After the test, cross-sections of the coated materials were prepared to compare the failure behaviors under tensile strain and compressive strain induced by T-bend test. And the observation results show that coating cracking, interface cracking and partial spalling appear step by step. Based on experimental results, a new method may be proposed to rank the coated materials with strong inter-facial adhesion. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.

Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of technologically important materials undergo solid-solid phase transformations. Examples range from ferroelectrics (transducers and memory devices), zirconia (Thermal Barrier Coatings) to nickel superalloys and (lithium) iron phosphate (Li-ion batteries). These transformations involve a change in the crystal structure either through diffusion of species or local rearrangement of atoms. This change of crystal structure leads to a macroscopic change of shape or volume or both and results in internal stresses during the transformation. In certain situations this stress field gives rise to cracks (tin, iron phosphate etc.) which continue to propagate as the transformation front traverses the material. In other materials the transformation modifies the stress field around cracks and effects crack growth behavior (zirconia, ferroelectrics). These observations serve as our motivation to study cracks in solids undergoing phase transformations. Understanding these effects will help in improving the mechanical reliability of the devices employing these materials.

In this thesis we present work on two problems concerning the interplay between cracks and phase transformations. First, we consider the directional growth of a set of parallel edge cracks due to a solid-solid transformation. We conclude from our analysis that phase transformations can lead to formation of parallel edge cracks when the transformation strain satisfies certain conditions and the resulting cracks grow all the way till their tips cross over the phase boundary. Moreover the cracks continue to grow as the phase boundary traverses into the interior of the body at a uniform spacing without any instabilities. There exists an optimal value for the spacing between the cracks. We ascertain these conclusion by performing numerical simulations using finite elements.

Second, we model the effect of the semiconducting nature and dopants on cracks in ferroelectric perovskite materials, particularly barium titanate. Traditional approaches to model fracture in these materials have treated them as insulators. In reality, they are wide bandgap semiconductors with oxygen vacancies and trace impurities acting as dopants. We incorporate the space charge arising due the semiconducting effect and dopant ionization in a phase field model for the ferroelectric. We derive the governing equations by invoking the dissipation inequality over a ferroelectric domain containing a crack. This approach also yields the driving force acting on the crack. Our phase field simulations of polarization domain evolution around a crack show the accumulation of electronic charge on the crack surface making it more permeable than was previously believed so, as seen in recent experiments. We also discuss the effect the space charge has on domain formation and the crack driving force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.

We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.

We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is divided into two independent papers.

PAPER 1.

Spall velocities were measured for nine experimental impacts into San Marcos gabbro targets. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles were iron, aluminum, lead, and basalt of varying sizes. The projectile masses ranged from a 4 g lead bullet to a 0.04 g aluminum sphere. The velocities of fragments were measured from high-speed films taken of the events. The maximum spall velocity observed was 30 m/sec, or 0.56 percent of the 5.4 km/sec impact velocity. The measured velocities were compared to the spall velocities predicted by the spallation model of Melosh (1984). The compatibility between the spallation model for large planetary impacts and the results of these small scale experiments are considered in detail.

The targets were also bisected to observe the pattern of internal fractures. A series of fractures were observed, whose location coincided with the boundary between rock subjected to the peak shock compression and a theoretical "near surface zone" predicted by the spallation model. Thus, between this boundary and the free surface, the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

PAPER 2.

Carbonate samples from the nuclear explosion crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron para- magnetic resonance, EPR. The first series of samples for OAK Crater were obtained from six boreholes within the crater, and the second series were ejecta samples recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to spectra of Solenhofen limestone, which had been shocked to known pressures.

The results of the OAK borehole analysis have identified a thin zone of highly shocked carbonate material underneath the crater floor. This zone has a maximum depth of approximately 200 ft below sea floor at the ground zero borehole and decreases in depth towards the crater rim. A layer of highly shocked material is also found on the surface in the vicinity of the reference bolehole, located outside the crater. This material could represent a fallout layer. The ejecta samples have experienced a range of shock pressures.

It was also demonstrated that the EPR technique is feasible for the study of terrestrial impact craters formed in carbonate bedrock. The results for the Meteor Crater analysis suggest a slight degree of shock damage present in the β member of the Kaibab Formation exposed in the crater walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the hanging wall. Fault opening rates indicate that the hanging and foot walls detach near the earth surface, a phenomenon promoted by a decrease in magnitude of far-field tectonic loads. Subsequent shutting of the fault sends an opening pulse back down-dip. In case of a sub-Rayleigh earthquake, feedback from the reflected S wave re-ruptures the locked fault at super-shear speeds, providing another mechanism of super-shear transition.