831 resultados para feeling of self-efficacy
Resumo:
OBJECTIVE: To compare analgesic efficacy of preoperative versus postoperative administration of carprofen and to determine, if preincisional mepivacaine epidural anesthesia improves postoperative analgesia in dogs treated with carprofen. STUDY DESIGN: Blind, randomized clinical study. ANIMALS: Dogs with femoral (n=18) or pelvic (27) fractures. METHODS: Dogs were grouped by restricted randomization into 4 groups: group 1 = carprofen (4 mg/kg subcutaneously) immediately before induction of anesthesia, no epidural anesthesia; group 2 = carprofen immediately after extubation, no epidural anesthesia; group 3 = carprofen immediately before induction, mepivacaine epidural block 15 minutes before surgical incision; and group 4 = mepivacaine epidural block 15 minutes before surgical incision, carprofen after extubation. All dogs were administered carprofen (4 mg/kg, subcutaneously, once daily) for 4 days after surgery. Physiologic variables, nociceptive threshold, lameness score, pain, and sedation (numerical rating scale [NRS], visual analog scale [VAS]), plasma glucose and cortisol concentration, renal function, and hemostatic variables were measured preoperatively and at various times after surgery. Dogs with VAS pain scores >30 were administered rescue analgesia. RESULTS: Group 3 and 4 dogs had significantly lower pain scores and amount of rescue analgesia compared with groups 1 and 2. VAS and NRS pain scores were not significantly different among groups 1 and 2 or among groups 3 and 4. There was no treatment effect on renal function and hemostatic variables. CONCLUSIONS: Preoperative carprofen combined with mepivacaine epidural anesthesia had superior postoperative analgesia compared with preoperative carprofen alone. When preoperative epidural anesthesia was performed, preoperative administration of carprofen did not improve postoperative analgesia compared with postoperative administration of carprofen. CLINICAL RELEVANCE: Preoperative administration of systemic opioid agonists in combination with regional anesthesia and postoperative administration of carprofen provides safe and effective pain relieve in canine fracture repair.
Resumo:
Zeki and co-workers recently proposed that perception can best be described as locally distributed, asynchronous processes that each create a kind of microconsciousness, which condense into an experienced percept. The present article is aimed at extending this theory to metacognitive feelings. We present evidence that perceptual fluency-the subjective feeling of ease during perceptual processing-is based on speed of processing at different stages of the perceptual process. Specifically, detection of briefly presented stimuli was influenced by figure-ground contrast, but not by symmetry (Experiment 1) or the font (Experiment 2) of the stimuli. Conversely, discrimination of these stimuli was influenced by whether they were symmetric (Experiment 1) and by the font they were presented in (Experiment 2), but not by figure-ground contrast. Both tasks however were related with the subjective experience of fluency (Experiments 1 and 2). We conclude that subjective fluency is the conscious phenomenal correlate of different processing stages in visual perception.
Intentionally in non-equilibrium systems? The functional aspects of self-organized pattern formation
Effects of self-compatibility on the distribution range of invasive European plants in North America
Resumo:
Comments on an article by Kashima et al. (see record 2007-10111-001). In their target article Kashima and colleagues try to show how a connectionist model conceptualization of the self is best suited to capture the self's temporal and socio-culturally contextualized nature. They propose a new model and to support this model, the authors conduct computer simulations of psychological phenomena whose importance for the self has long been clear, even if not formally modeled, such as imitation, and learning of sequence and narrative. As explicated when we advocated connectionist models as a metaphor for self in Mischel and Morf (2003), we fully endorse the utility of such a metaphor, as these models have some of the processing characteristics necessary for capturing key aspects and functions of a dynamic cognitive-affective self-system. As elaborated in that chapter, we see as their principal strength that connectionist models can take account of multiple simultaneous processes without invoking a single central control. All outputs reflect a distributed pattern of activation across a large number of simple processing units, the nature of which depends on (and changes with) the connection weights between the links and the satisfaction of mutual constraints across these links (Rummelhart & McClelland, 1986). This allows a simple account for why certain input features will at times predominate, while others take over on other occasions. (PsycINFO Database Record (c) 2008 APA, all rights reserved)
Resumo:
Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.
Resumo:
Self-stabilization is a property of a distributed system such that, regardless of the legitimacy of its current state, the system behavior shall eventually reach a legitimate state and shall remain legitimate thereafter. The elegance of self-stabilization stems from the fact that it distinguishes distributed systems by a strong fault tolerance property against arbitrary state perturbations. The difficulty of designing and reasoning about self-stabilization has been witnessed by many researchers; most of the existing techniques for the verification and design of self-stabilization are either brute-force, or adopt manual approaches non-amenable to automation. In this dissertation, we first investigate the possibility of automatically designing self-stabilization through global state space exploration. In particular, we develop a set of heuristics for automating the addition of recovery actions to distributed protocols on various network topologies. Our heuristics equally exploit the computational power of a single workstation and the available parallelism on computer clusters. We obtain existing and new stabilizing solutions for classical protocols like maximal matching, ring coloring, mutual exclusion, leader election and agreement. Second, we consider a foundation for local reasoning about self-stabilization; i.e., study the global behavior of the distributed system by exploring the state space of just one of its components. It turns out that local reasoning about deadlocks and livelocks is possible for an interesting class of protocols whose proof of stabilization is otherwise complex. In particular, we provide necessary and sufficient conditions – verifiable in the local state space of every process – for global deadlock- and livelock-freedom of protocols on ring topologies. Local reasoning potentially circumvents two fundamental problems that complicate the automated design and verification of distributed protocols: (1) state explosion and (2) partial state information. Moreover, local proofs of convergence are independent of the number of processes in the network, thereby enabling our assertions about deadlocks and livelocks to apply on rings of arbitrary sizes without worrying about state explosion.
Resumo:
Recent clinical trials have reported favorable early results for transpedicular vertebral cement reinforcement of osteoporotic vertebral insufficiencies. There is, however, a lack of basic data on the application, safety and biomechanical efficacy of materials such as polymethyl-methacrylate (PMMA) and calciumphospate (CaP) cements. The present study analyzed 33 vertebral pairs from five human cadaver spines. Thirty-nine vertebrae were osteoporotic (bone mineral density < 0.75 g/cm2), 27 showed nearly normal values. The cranial vertebra of each pair was augmented with either PMMA (Palacos E-Flow) or experimental brushite cement (EBC), with the caudal vertebra as a control. PMMA and EBC were easy to inject, and vertebral fillings of 20-50% were achieved. The maximal possible filling was inversely correlated to the bone mineral density (BMD) values. Cement extrusion into the spinal canal was observed in 12% of cases. All specimens were subjected to axial compression tests in a displacement-controlled mode. From load-displacement curves, the stiffness, S, and the maximal force before failure, Fmax, were determined. Compared with the native control vertebrae, a statistically significant increase in vertebral stiffness and Fmax was observed by the augmentation. With PMMA the stiffness increased by 174% (P = 0.018) and Fmax by 195% (P = 0.001); the corresponding augmentation with EBC was 120% (P = 0.03) and 113% (P = 0.002). The lower the initial BMD, the more pronounced was the augmentation effect. Both PMMA and EBC augmentation reliably and significantly raised the stiffness and maximal tolerable force until failure in osteoporotic vertebral bodies. In non-porotic specimens, no significant increase was achieved.
Resumo:
This article describes a series of experiments which were carried out to measure the sense of presence in auditory virtual environments. Within the study a comparison of self-created signals to signals created by the surrounding environment is drawn. Furthermore, it is investigated if the room characteristics of the simulated environment have consequences on the perception of presence during vocalization or when listening to speech. Finally the experiments give information about the influence of background signals on the sense of presence. In the experiments subjects rated the degree of perceived presence in an auditory virtual environment on a perceptual scale. It is described which parameters have the most influence on the perception of presence and which ones are of minor influence. The results show that on the one hand an external speaker has more influence on the sense of presence than an adequate presentation of one’s own voice. On the other hand both room reflections and adequately presented background signals significantly increase the perceived presence in the virtual environment.
Resumo:
We present a voltammetric and in situ STM study of 11-ferrocenyl-1-undecanethiol (FcC11) assembled on low-index single crystal and polycrystalline gold electrodes. The influence of electrode surface structure as well as of structure defects in the self-assembled FcC11 monolayers on the electrochemical response during the oxidation and reduction of the terminal ferrocene group is explored. The nature of the redox peaks is discussed in detail. We identified the coexistence of disordered FcC11 regions with 2D patches of “locally ordered” FcC11 species. We demonstrate that close-packed domains are preferentially formed at atomically flat terraces. Increasing the defect density of the substrate surface leads to a decreasing amount of locally ordered FcC11 molecules.