988 resultados para expiratory flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed steady and unsteady experimental measurements and analysis were performed on a Single stage Transonic Axial Compressor with asymmetric rotor tip clearance for studying the compressor stall phenomena. The installed compressor had asymmetric tip clearance around the rotor casing varying from about 0.65mm to 1.25mm. A calibrated 5-hole aerodynamic probe was traversed radially at exit of rotor and showed the characteristics of increased flow angle at lower mass flow rates for all the speeds. Mach number distribution and boundary layer effects were also clearly captured. Unsteady measurements for velocity were carried out to study the stall cell behavior using a single component calibrated hotwire probe oriented in axial and tangential directions for choke/free flow and near stall conditions. The hotwire probe was traversed radially across the annulus at inlet to the compressor and showed that the velocity fluctuations were dissimilar when probe was aligned axial and tangential to the flow. Averaged velocities across the annulus showed the reduction in velocity as stall was approached. Axial mean flow velocity decreased across the annulus for all the speeds investigated. Tangential velocity at free flow condition was higher at the tip region due to larger radius. At stall condition, the tangential velocity showed decreased velocities at the tip and slightly increased velocities at the hub section indicating that the flow has breakdown at the tip region of the blade and fluid is accelerated below the blockage zone. The averaged turbulent intensity in axial and tangential flow directions increased from free flow to stall condition for all compressor rated speeds. Fast Fourier Transform (FFT) of the raw signals at stall flow condition showed stall cell and its corresponding frequency of occurrence. The stalling frequency of about half of rotational speed of the rotor along with large tip clearance suggests that modal type stall inception was occurring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using in situ imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale non-smooth contact dynamics simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new implantable biomaterials requires bone-mimicking physical properties together with desired biocompatible property. In continuation to our earlier published research to establish compositional dependent multifunctional bone-like properties and cytocompatibility response of hydroxyapatite (HA)-BaTiO3 composites, the toxicological property evaluation, both invitro and invivo, were conducted on HA-40wt% BaTiO3 and reported in this work. In particular, this work reports invitro cytotoxicity of mouse myoblast cells as well as invivo long-term tissue and nanoparticles interaction of intra-articularly injected HA-40wt% BaTiO3 and BaTiO3 up to the concentration of 25mg/mL in physiological saline over 12weeks in mouse model. The careful analysis of flow cytometry results could not reveal any statistically significant difference in terms of early/late apoptotic cells or necrotic cells over 8d in culture. Extensive histological analysis could not record any signature of cellular level toxicity or pronounced inflammatory response in vital organs as well as at knee joints of Balb/c mice after 12weeks. Taken together, this study establishes nontoxic nature of HA-40wt% BaTiO3 and therefore, HA-40wt% BaTiO3 can be used safely for various biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase change heat transfer in porous media finds applications in various geological flows and modern heat pipes. We present a study to show the effect of phase change on heat transfer in a porous channel. We show that the ratio of Jakob numbers based on wall superheat and inlet fluid subcooling governs the liquid-vapor interface location in the porous channel and below a critical value of the ratio, the liquid penetrates all the way to the extent of the channel in the flow direction. In such cases, the Nusselt number is higher due to the proximity of the liquid-vapor interface to the heat loads. For higher heat loads or lower subcooling of the liquid, the liquid-vapor interface is pushed toward the inlet, and heat transfer occurs through a wider vapor region thus resulting in a lower Nusselt number. This study is relevant in the designing of efficient two-phase heat exchangers such as capillary suction based heat pipes where a prior estimation of the interface location for the maximum heat load is required to ensure that the liquid-vapor interface is always inside the porous block for its operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterized not just by high Mach numbers, but also high flow total enthalpies-often accompanied by dissociation and ionization of flowing gas itself-the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times-typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 mu s, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg(-1)) and 8.67 (total enthalpy 1.6 MJ kg(-1)), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of textured hydrophobic surfaces to provide substantial drag reduction has been attributed to the presence of air bubbles trapped on the surface cavities. In this paper, we present results on water flow past a textured hydrophobic surface, while systematically varying the absolute pressure close to the surface. Trapped air bubbles on the surface are directly visualized, along with simultaneous pressure drop measurements across the surface in a microchannel configuration. We find that varying the absolute pressure within the channel greatly influences the trapped air bubble behavior, causing a consequent effect on the pressure drop (drag). When the absolute pressure within the channel is maintained below atmospheric pressure, we find that the air bubbles grow in size, merge and eventually detach from the surface. This growth and subsequent merging of the air bubbles leads to a substantial increase in the pressure drop. On the other hand, a pressure above the atmospheric pressure within the channel leads to gradual shrinkage and eventual disappearance of trapped air bubbles. We find that in this case, air bubbles do cause reduction in the pressure drop with the minimum pressure drop (or maximum drag reduction) occurring when the bubbles are flush with the surface. These results show that the trapped air bubble dynamics and the pressure drop across a textured hydrophobic microchannel are very significantly dependent on the absolute pressure within the channel. The results obtained hold important implications toward achieving sustained drag reduction in microfluidic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a new approach to study the nonlinear inviscid flow over arbitrary bottom topography. The problem is formulated as a nonlinear boundary value problem which is reduced to a Dirichlet problem using certain transformations. The Dirichlet problem is solved by applying Plemelj-Sokhotski formulae and it is noticed that the solution of the Dirichlet problem depends on the solution of a coupled Fredholm integral equation of the second kind. These integral equations are solved numerically by using a modified method. The free-surface profile which is unknown at the outset is determined. Different kinds of bottom topographies are considered here to study the influence of bottom topography on the free-surface profile. The effects of the Froude number and the arbitrary bottom topography on the free-surface profile are demonstrated in graphical forms for the subcritical flow. Further, the nonlinear results are validated with the results available in the literature and compared with the results obtained by using linear theory. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow characteristics of a near-eutectic heat-treated Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of flow behavior on modification is examined by testing the alloy in both the unmodified and modified conditions. Modification has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. The strength of the alloy is found to increase with increase in strain rate for both the conditions. The increase is more rapid above the strain rate of 10(-1) s(-1) for the unmodified alloy at all the temperatures. This rapid increase is observed at 1 s(-1) at RT and 100 degrees C, and at 10(-2) s(-1) at 200 degrees C for the modified alloy. The thermally dependent process of the Al matrix is rate controlling in the unmodified alloy. On the other hand, the thermally dependent process of both Al matrix and Si particles are rate controlling, which is responsible for the higher strain rate sensitivity (SRS) in the modified alloy. The unmodified alloy exhibits a larger work hardening rate than the modified alloy during the initial stages of straining due to fiber loading of unmodified Si particles. However, the hardening rate decreases sharply at higher strains for the unmodified alloy due to a higher rate of Si particle fracture. Thermal softening is observed for both alloys at 200 degrees C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by microstructure based finite element method support the experimentally observed particle and matrix fracture behavior. Negative SRS and serrated flow are observed at lower strain rate regime (3 x 10(-4) to 10(-2) s(-1)) at RT and 100 degrees C, in both alloys. The critical onset strain is found to be lower and the magnitude of serration is found to be higher for the modified alloy, which suggests that, in addition to dynamic strain aging, Si particle size and morphology also play a role in serrated flow. (C) 2015 Elsevier Inc All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using coherent light interrogating a turbid object perturbed by a focused ultrasound (US) beam, we demonstrate localized measurement of dynamics in the focal region, termed the region-of-interest (ROI), from the decay of the modulation in intensity autocorrelation of light. When the ROI contains a pipe flow, the decay is shown to be sensitive to the average flow velocity from which the mean-squared displacement (MSD) of the scattering centers in the flow can be estimated. While the MSD estimated is seen to be an order of magnitude higher than that obtainable through the usual diffusing wave spectroscopy (DWS) without the US, it is seen to be more accurate as verified by the volume flow estimated from it. It is further observed that, whereas the MSD from the localized measurement grows with time as tau(alpha) with alpha approximate to 1.65, without using the US, a is seen to be much less. Moreover, with the local measurement, this super-diffusive nature of the pipe flow is seen to persist longer, i.e., over a wider range of initial tau, than with the unassisted DWS. The reason for the super-diffusivity of flow, i.e., alpha < 2, in the ROI is the presence of a fluctuating (thermodynamically nonequilibrium) component in the dynamics induced by the US forcing. Beyond this initial range, both methods measure MSDs that rise linearly with time, indicating that ballistic and near-ballistic photons hardly capture anything beyond the background Brownian motion. (C) 2015 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instabilities arising in unsteady boundary layers with reverse flow have been investigated experimentally. Experiments are conducted in a piston driven unsteady water tunnel with a shallow angle diffuser placed in the test section. The ratio of temporal (Pi(t)) to spatial (Pi(x)) component of the pressure gradient can be varied by a controlled motion of the piston. In all the experiments, the piston velocity variation with time is trapezoidal consisting of three phases: constant acceleration from rest, constant velocity and constant deceleration to rest. The adverse pressure gradient (and reverse flow) are due to a combination of spatial deceleration of the free stream in the diffuser and temporal deceleration of the free stream caused by the piston deceleration. The instability is usually initiated with the formation of one or more vortices. The onset of reverse flow in the boundary layer, location and time of formation of the first vortex and the subsequent flow evolution are studied for various values of the ratio Pi(x) (Pi(x) + Pi(t)) for the bottom and the top walls. Instability is due to the inflectional velocity profiles of the unsteady boundary layer. The instability is localized and spreads to the other regions at later times. At higher Reynolds numbers growth rate of instability is higher and localized transition to turbulence is observed. Scalings have been proposed for initial vortex formation time and wavelength of the instability vortices. Initial vortex formation time scales with convective time, delta/Delta U, where S is the boundary layer thickness and Delta U is the difference of maximum and minimum velocities in the boundary layer. Non-dimensional vortex formation time based on convective time scale for the bottom and the top walls are found to be 23 and 30 respectively. Wavelength of instability vortices scales with the time averaged boundary layer thickness. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations were employed to investigate the specimen thickness-dependent tensile behavior of a series of Cu(x)Z(100-x) (x = 20, 40, 50, 64 and 80 at%) metallic glass (MG) films, with a particular focus on the critical thickness, tc, below which non-localized plastic flow takes place. The simulation results reveal that while the transition occurs in all the alloys examined, t(c) is sensitive to the composition. We rationalize t(c) by postulating that the strain energy stored in the sample at the onset of plastic deformation has to be sufficient for the formation of shear bands. The composition-dependence of t(c) was found to correlate with the average activation energy of the atomic level plastic deformation events. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging flow cytometry is an emerging technology that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy. It allows high-throughput imaging of cells with good spatial resolution, while they are in flow. This paper proposes a general framework for the processing/classification of cells imaged using imaging flow cytometer. Each cell is localized by finding an accurate cell contour. Then, features reflecting cell size, circularity and complexity are extracted for the classification using SVM. Unlike the conventional iterative, semi-automatic segmentation algorithms such as active contour, we propose a noniterative, fully automatic graph-based cell localization. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using custom fabricated cost-effective microfluidics-based imaging flow cytometer. The proposed system is a significant development in the direction of building a cost-effective cell analysis platform that would facilitate affordable mass screening camps looking cellular morphology for disease diagnosis. Lay description In this article, we propose a novel framework for processing the raw data generated using microfluidics based imaging flow cytometers. Microfluidics microscopy or microfluidics based imaging flow cytometry (mIFC) is a recent microscopy paradigm, that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy, which allows us imaging cells while they are in flow. In comparison to the conventional slide-based imaging systems, mIFC is a nascent technology enabling high throughput imaging of cells and is yet to take the form of a clinical diagnostic tool. The proposed framework process the raw data generated by the mIFC systems. The framework incorporates several steps: beginning from pre-processing of the raw video frames to enhance the contents of the cell, localising the cell by a novel, fully automatic, non-iterative graph based algorithm, extraction of different quantitative morphological parameters and subsequent classification of cells. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using cost-effective microfluidics based imaging flow cytometer. The cell lines of HL60, K562 and MOLT were obtained from ATCC (American Type Culture Collection) and are separately cultured in the lab. Thus, each culture contains cells from its own category alone and thereby provides the ground truth. Each cell is localised by finding a closed cell contour by defining a directed, weighted graph from the Canny edge images of the cell such that the closed contour lies along the shortest weighted path surrounding the centroid of the cell from a starting point on a good curve segment to an immediate endpoint. Once the cell is localised, morphological features reflecting size, shape and complexity of the cells are extracted and used to develop a support vector machine based classification system. We could classify the cell-lines with good accuracy and the results were quite consistent across different cross validation experiments. We hope that imaging flow cytometers equipped with the proposed framework for image processing would enable cost-effective, automated and reliable disease screening in over-loaded facilities, which cannot afford to hire skilled personnel in large numbers. Such platforms would potentially facilitate screening camps in low income group countries; thereby transforming the current health care paradigms by enabling rapid, automated diagnosis for diseases like cancer.