994 resultados para erbium-doped fiber laser (EDFL)
Resumo:
An all fiber-optical method to monitor densities and viscosities of liquids utilizing a steel cantilever (4 x 0.3 x 0.08 cm3) is presented. The actuation is performed by photothermally heating the cantilever at its base with an intensity-modulated 808 nm diode laser. The cantilever vibrations are picked up by an in-fiber Fabry Perot cavity sensor attached along the length of the cantilever. The fluid properties can be related to the resonance characteristics of the cantilever, e.g. a shift in the resonance frequency corresponds to a change in fluid density, and the width of the resonance peak gives information on the dynamic viscosity after calibration of the system. Aqueous glycerol, sucrose and ethanol samples in the range of 0.79–1.32 gcm−3 (density) and 0.89–702 mPas (viscosity) were used to investigate the limits of the sensor. A good agreement with literature values could be found with an average deviation of around 10 % for the dynamic viscosities, and 5–16 % for the mass densities. A variety of clear and opaque commercial spirits and an unknown viscous sample, e.g. home-made maple syrup, were analyzed and compared to literature values. The unique detection mechanism allows for the characterization of opaque samples and is superior to conventional microcantilever sensors. The method is expected to be beneficial in various industrial sectors such as quality control of food samples.
Resumo:
A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Adhesion of fibroblasts cells on dentine cut surfaces by Er:YAG laser treated or not by Nd:YAG laser
Resumo:
In order to cope up with the ever increasing demand for larger transmission bandwidth, Radio over Fiber technology is a very beneficial solution. These systems are expected to play a major role within future fifth generation wireless networks due to their inherent capillary distribution properties. Nonlinear compensation techniques are becoming increasingly important to improve the performance of telecommunication channels by compensating for channel nonlinearities. Indeed, significant bounds on the technology usability and performance degradation occur due to nonlinear characteristics of optical transmitter, nonlinear generation of spurious frequencies, which, in the case of RoF links exploiting Directly Modulated Lasers , has the combined effect of laser chirp and optical fiber dispersion among its prevailing causes. The purpose of the research is to analyze some of the main causes of harmonic and intermodulation distortion present in Radio over Fiber (RoF) links, and to suggest a solution to reduce their effects, through a digital predistortion technique. Predistortion is an effective and interesting solution to linearize and this allows to demonstrate that the laser’s chirp and the optical fiber’s dispersion are the main causes which generate harmonic distortion. The improvements illustrated are only theoretical, based on a feasibility point of view. The simulations performed lead to significant improvements for short and long distances of radio over fiber link lengths. The algorithm utilized for simulation has been implemented on MATLAB. The effects of chirp and fiber nonlinearity in a directly modulated fiber transmission system are investigated by simulation, and a cost effective and rather simple technique for compensating these effects is discussed. A detailed description of its functional model is given, and its attractive features both in terms of quality improvement of the received signal, and cost effectiveness of the system are illustrated.
Resumo:
Lanthanide doped zirconia based materials are promising phosphors for lighting applications. Transparent yttria stabilized zirconia fibres, in situ doped with Pr3+ ions, were grown by the laser floating zone method. The single crystalline doped fibres were found to be homogeneous in composition and provide an intense red luminescence at room temperature. The stability of this luminescence due to transitions between the 1D2 → 3H4 multiplets of the Pr3+ ions (intra-4f2 configuration) was studied by photo- and iono-luminescence. The evolution of the red integrated photoluminescence intensity with temperature indicates that the overall luminescence decreases to ca. 40% of the initial intensity at 14 K when heated to room temperature (RT). RT analysis of the iono-luminescence dependence on irradiation fluence reveals a decrease of the intensity (to slightly more than ∼60% of the initial intensity after 25 min of proton irradiation exposure). Nevertheless the luminescence intensity saturates at non-zero values for higher irradiation fluences revealing good potential for the use of this material in radiation environments.
Resumo:
This dissertation is concerned with the control, combining, and propagation of laser beams through a turbulent atmosphere. In the first part we consider adaptive optics: the process of controlling the beam based on information of the current state of the turbulence. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics can, in principle, correct these fluctuations. However, for many applications, the target is uncooperative. In this case, we show that an incoherent return from the target can be used instead. Using the principle of reciprocity, we derive a novel relation between the field at the target and the scattered field at a detector. We then demonstrate through simulation that an adaptive optics system can utilize this relation to focus a beam through atmospheric turbulence onto a rough surface. In the second part we consider beam combining. To achieve the power levels needed for directed energy applications it is necessary to combine a large number of lasers into a single beam. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations occurring on sub-nanosecond time scales. We demonstrate that this presents a challenging problem when attempting to phase-lock high-power lasers. Furthermore, we show that even if instruments are developed that can precisely control the phase of high-power lasers; coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Finally, we investigate the propagation of Bessel and Airy beams through atmospheric turbulence. It has been proposed that these quasi-non-diffracting beams could be resistant to the effects of atmospheric turbulence. However, we find that atmospheric turbulence disrupts the quasi-non-diffracting nature of Bessel and Airy beams when the transverse coherence length nears the initial aperture diameter or diagonal respectively. The turbulence induced transverse phase distortion limits the effectiveness of Bessel and Airy beams for applications requiring propagation over long distances in the turbulent atmosphere.
Resumo:
Upconverting nanoparticles have attracted much attention in science recently, specifically in view of medical and biological applications such as live imaging of cell temperatures or cancer treatment. The previously studied system of gadolinium oxide nanorods co-doped with erbium and ytterbium and decorated with different number densities of gold nanoparticles has been studied. So far, these particles have been proven as efficient nanothermometers in a temperature range from 300 up to 2000 K. In this work, a more detailed study on the morphological and radiative behaviour of these particles has been conducted. It was found that the laser power threshold for the onset of the black body radiation decreases strongly with the increase in the gold concentration. The temperature of the onset itself seems to remain approximately constant. The heating efficiency was determined to increase significantly with the gold concentration. The morphological study revealed that the temperature at the black body radiation threshold was not enough to induce any significant transformation in neither the nanorods nor the gold nanoparticles, as was expected from comparison with literature. However, significant changes in radiative properties and the morphology were detected for powders that underwent strong laser heating until the emission of brightly visible black body radiation.