982 resultados para enzyme inhibition
Resumo:
The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.
Resumo:
Fabry disease is a X-linked sphingolipid storage disorder resulting from the defective activity of the lysosomal enzyme, alpha-galactosidase A. Hemizygotes develop severe multisystemic disease, dominated by renal failure and progressive neurological and cardiac involvement, causing premature death. Thirty percent of heterozygotes have severe involvement of one or several organs. With developments in molecular biology, it is now possible to produce the human recombinant enzyme alpha-galactosidase A. More than 20 patients are now treated in Switzerland.
Resumo:
Tumor angiogenesis is an essential step in tumor progression and metastasis formation. Suppression of tumor angiogenesis results in the inhibition of tumor growth. Recent evidence indicates that vascular integrins, in particular alpha V beta 3, are important regulators of angiogenesis, including tumor angiogenesis. Integrin alpha V beta 3 antagonists, such as blocking antibodies or peptides, suppress tumor angiogenesis and tumor progression in many preclinical tumor models. The potential therapeutic efficacy of extracellular integrin antagonists in human cancer is currently being tested in clinical trials. Selective disruption of the tumor vasculature by high doses of tumor necrosis factor (TNF) and interferon gamma (IFN-gamma), and the antiangiogenic activity of nonsteroidal anti-inflammatory drugs are associated with the suppression of integrin alpha V beta 3 function and signaling in endothelial cells. Furthermore, expression of isolated integrin cytoplasmic domains disrupts integrin-dependent adhesion, resulting in endothelial cell detachment and apoptosis. These results confirm the critical role of vascular integrins in promoting endothelial cell survival and angiogenesis and suggest that intracellular targeting of integrin function and signaling may be an alternative strategy to extracellular integrin antagonists for the therapeutic inhibition of tumor angiogenesis.
Resumo:
The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.
Resumo:
Antigen-specific T-cell activation implicates a redistribution of plasma membrane-bound molecules in lipid rafts, such as the coreceptors CD8 and CD4, the Src kinases Lek and Fyn, and the linker for activation of T cells (LAT), that results in the formation of signaling complexes. These molecules partition in lipid rafts because of palmitoylation of cytoplasmic, membrane proximal cysteines, which is essential for their functional integrity in T-cell activation. Here, we show that exogenous dipalmitoyl-phosphatidylethanolamine (DPPE), but not the related unsaturated dioleoyl-phosphatidylethanolamine (DOPE), partitions in lipid rafts. DPPE inhibits activation of CD8(+) T lymphocytes by sensitized syngeneic antigen-presenting cells or specific major histocompatibility complex (MHC) peptide tetramers, as indicated by esterase release and intracellular calcium mobilization. Cytotoxic, T lymphocyte (CTL)-target cell conjugate formation is not affected by DPPE, indicating that engagement of the T-cell receptor by its cognate ligand is intact in lipid-treated cells. In contrast to other agents known to block raft-dependent signaling, DPPE efficiently inhibits the MHC peptide-induced recruitment of palmitoylated signaling molecules to lipid rafts and CTL activation without affecting cell viability or lipid raft integrity.
Resumo:
Limiting the development of secondary damage represents one of the major goals of neuroprotective therapies after spinal cord injury. Here, we demonstrate that specific JNK inhibition via a single intraperitoneal injection of the cell permeable peptide D-JNKI1 6h after lesion improves locomotor recovery assessed by both the footprint and the BMS tests up to 4 months post-injury in mice. JNK inhibition prevents c-jun phosphorylation and caspase-3 cleavage, has neuroprotective effects and results in an increased sparing of white matter at the lesion site. Lastly, D-JNKI1 treated animals show a lower increase of erythrocyte extravasation and blood brain barrier permeability, thus indicating protection of the vascular system. In total, these results clearly point out JNK inhibition as a promising neuroprotective strategy for preventing the evolution of secondary damage after spinal cord injury.
Resumo:
The terminal differentiation of neuronal and pancreatic beta-cells requires the specific expression of genes that are targets of an important transcriptional repressor named RE-1 silencing transcription factor (REST). The molecular mechanism by which these REST target genes are expressed only in neuronal and beta-cells and are repressed by REST in other tissues is a central issue in differentiation program of neuronal and beta-cells. Herein, we showed that the transcriptional factor Sp1 was required for expression of most REST target genes both in insulin-secreting cells and neuronal-like cells where REST is absent. Inhibition of REST in a non-beta and a non-neuronal cell model restored the transcriptional activity of Sp1. This activity was also restored by trichostatin A indicating the requirement of histone deacetylases for the REST-mediated silencing of Sp1. Conversely, exogenous introduction of REST blocked Sp1-mediated transcriptional activity. The REST inhibitory effect was mediated through its C-terminal repressor domain, which could interact with Sp1. Taken together, these data show that the inhibition of Sp1 by REST is required for the silencing of its target genes expression in non-neuronal and in non-beta-cells. We conclude that the interplay between REST and Sp1 determines the cell-specific expression of REST target genes.
Resumo:
Hypertension is associated with increased risk of cardiovascular diseases. Antihypertensive treatment, particularly blockade of the renin-angiotensin system, contributes to prevent atherosclerosis-mediated cardiovascular events. Direct comparison of different antihypertensive treatments on atherosclerosis and particularly plaque stabilization is sparse. ApoE(-/-) mice with vulnerable (2-kidney, 1-clip renovascular hypertension model) or stable (1-kidney, 1-clip renovascular hypertension model) atherosclerotic plaques were used. Mice were treated with aliskiren (renin inhibitor), irbesartan (angiotensin-receptor blocker), atenolol (beta-blocker), or amlodipine (calcium channel blocker). Atherosclerosis characteristics were assessed. Hemodynamic and hormonal parameters were measured. Aliskiren and irbesartan significantly prevented atherosclerosis progression in 2-kidney, 1-clip mice. Indeed, compared with untreated animals, plaques showed thinner fibrous cap (P<0.05); smaller lipid core (P<0.05); decreased media degeneration, layering, and macrophage content (P<0.05); and increased smooth muscle cell content (P<0.05). Interestingly, aliskiren significantly increased the smooth muscle cell compared with irbesartan. Despite similar blood pressure lowering, only partial plaque stabilization was attained by atenolol and amlodipine. Amlodipine increased plaque smooth muscle cell content (P<0.05), whereas atenolol decreased plaque inflammation (P<0.05). This divergent effect was also observed in 1-kidney, 1-clip mice. Normalizing blood pressure by irbesartan increased the plasma renin concentration (5932+/-1512 ng/mL per hour) more than normalizing it by aliskiren (16085+/-5628 ng/mL per hour). Specific renin-angiotensin system blockade prevents atherosclerosis progression. First, evidence is provided that direct renin inhibition mediates atherosclerotic plaque stabilization. In contrast, beta-blocker and calcium channel blocker treatment only partially stabilize plaques differently influencing atherogenesis. Angiotensin II decisively mediates plaque vulnerability. The plasma renin concentration measurement by an indirect method did not confirm the excessive increase of plasma renin concentration reported in the literature during aliskiren compared with irbesartan or amlodipine treatment.
Resumo:
Both angiotensin converting enzyme (ACE) inhibitors and potassium-sparing diuretics tend to increase serum potassium levels. This retrospective study was undertaken to assess whether these two types of agents can nevertheless be combined safely. Twelve hypertensive patients were treated for 1-70 months (mean = 17) with an ACE inhibitor together with a potassium-sparing diuretic (spironolactone, n = 10; amiloride, n = 2). In addition, eight patients also took a thiazide or a loop diuretic. Nine patients had a normal and three a slightly impaired renal function. No clinically relevant hyperkalemia was observed during the course of the study. These data suggest that it is not impossible to combine an ACE inhibitor with a potassium-sparing diuretic, as long as renal function is normal and serum potassium concentration is monitored closely.
Resumo:
Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.
Resumo:
This work presents the functional characterisation of a protein phosphatase 2A (PP2A) catalytic subunit obtained by genetic engineering and its conjugation to magnetic particles (MPs) via metal coordination chemistry for the subsequent development of assays for diarrheic lipophilic marine toxins. Colorimetric assays with free enzyme have allowed the determination of the best enzyme activity stabiliser, which is glycerol at 10%. They have also demonstrated that the recombinant enzyme can be as sensitive towards okadaic acid (OA) (LOD=2.3μg/L) and dinophysistoxin-1 (DTX-1) (LOD=15.2μg/L) as a commercial PP2A and, moreover, it has a higher operational stability, which makes possible to perform the protein phosphatase inhibition assay (PPIA) with a lower enzyme amount. Once conjugated to MPs, the PP2A catalytic subunit still retains its enzyme activity and it can also be inhibited by OA (LOD=30.1μg/L).
Resumo:
Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death.
Resumo:
Thirty strains from the 11 species of the genus Leptospira were studied by multilocus enzyme electrophoresis at 12 enzyme loci, all of which were polymorphic. The mean number of alleles per locus was 6.5. Twenty-five electrophoretic types were distinguished. Grouping of the strains by cluster analysis was in general agreement with species delineation as determined by DNA-DNA hybridization, except for the strains of Leptospira meyeri and Leptospira inadai, which were scattered throughout the genus, reflecting previously recognized taxonomic uncertainties. Analysis of the clonality within Leptospira interrogans sensu stricto indicated that this population was relatively heterogeneous and a lack of gene linkage disequilibrium could not be excluded. There was a genetic discrimination between the pathogenic species and the saprophytic ones. The phenotypically intermediate species (L. inadai and Leptospira fainei) were also genetically separated and were probably closer to the saprophytes than to the pathogens.
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.
Resumo:
The mineralocorticoid receptor (MR) plays a crucial role in the regulation of Na(+) balance and blood pressure, as evidenced by gain of function mutations in the MR of hypertensive families. In the kidney, aldosterone binds to the MR, induces its nuclear translocation, and promotes a transcriptional program leading to increased transepithelial Na(+) transport via the epithelial Na(+) channel. In the unliganded state, MR is localized in the cytosol and part of a multiprotein complex, including heat shock protein 90 (Hsp90), which keeps it ligand-binding competent. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic that binds to Hsp90 and alters its function. We investigated whether 17-AAG affects the stability and transcriptional activity of MR and consequently Na(+) reabsorption by renal cells. 17-AAG treatment lead to reduction of MR protein level in epithelial cells in vitro and in vivo, thereby interfering with aldosterone-dependent transcription. Moreover, 17-AAG inhibited aldosterone-induced Na(+) transport, possibly by interfering with MR availability for the ligand. Finally, we identified the ubiquitin-protein ligase, COOH terminus of Hsp70-interacting protein, as a novel partner of the cytosolic MR, which is responsible for its polyubiquitylation and proteasomal degradation in presence of 17-AAG. In conclusion, 17-AAG may represent a novel pharmacological tool to interfere with Na(+) reabsorption and hypertension.