935 resultados para electronic conducting polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farm communication and extension programs are vital part of the farm development attempts. Electronic media plays a major role in farm extension activities. Kerala, the consumer state, which was a complete agricultural state in pre-independence period, is the sprouting land of agricultural extension and publication activities in print media. Later AIR (All India Radio) farm programs and farm broadcasting of Doordarshan enriched the role of electronic media in farm extension activities. The media saturated southern state of India received this new electronic media farm communication revolution whole heartedly. However, after 1990, Kerala witnessed a flood of private T V channels and currently there are 24 channels in this regional language, named Malayalam. All major news and entertainment channels are broadcasting farm programs. Farm programs of AIR and Doordarshan, broadcasted in Malayalam language, have been well accepted to the farmers‘ in Kerala. However, post-independence period, witnessed the formation of Kerala state in Indian Union and the first ballot-elected communist Government started its administration. After the land reform bills, the state witnessed a gradual decrease in agricultural production. Even if it is not reflected much in the attitude and practices of farm community and farm broadcast of traditional electronic broadcasting, a change is observable after the post-liberalization era of India. Private Television channels, which were focused on entertainment value of programs, started broadcasting farm programs and the parameters of program production went through certain changes. In this situation, there is ample relevance for a study about the farm programs of electronic media in terms of a comparative study of audience perception. The study is limited in the state of Kerala as it is the most media saturated state in India. The study analyzes the rate, nature and scope of adoption of farming methods transmitted through electronic media (T.V. and Radio) in Malayalam language.All kinds of Farm programs including comprehensive program serials, success stories, seasonal cropping methods, experts opinion, been analyzed on the basis of the following objectives.  To find whether propagating new farm methods through farm programs in electronic media or the availability of adequate infrastructure and economic factors make a farmer to adopt a new farming method.  To find which electronic media has more influence on farmers to adopt agricultural programs.  To find which form of electronic media gets better feedback from farmers  To find out whether the programs of T.V. or Radio is more acceptable to farmers than the print media.  To find whether farmers gets the message through their preferred medium for the message. The researcher recorded opinions from a panel of agricultural officers, farm Information officers, agro extension researchers and experts. According to their opinions and guidelines, a pilot study is designed and conducted in Kanjikuzhy Panchayath, in Alappuzha district, Kerala. The Panchayath is selected by considering its ideal nature of being the sample for a social Science research. Besides, the nature of farming in the Panchayath, which devoid of the cultivation of cash crops also supported its sample value. As per the observations from the pilot study, researcher confirmed the Triangulation method as the methodology of research. The questionnaire survey, being the primary part contained 42 Questions with 6 independent and 32 dependent variables. The survey is conducted among 400 respondents in Idukki, Alappuzha and Pathanamthitta districts considering geographical differences and distribution of different types of crops. The response from a total of 360 respondents, 120 from each district, finally selected for tabulation and data analysis.The data analysis, based on percentage analysis, along with the results from focus group discussion among a selected group of 20 farmers, together produced the results as follows. Farmers, who are the audience of farm programs, have a very serious approach towards the medium. They are maintaining a critical point of view towards the content of the programs. Farmers are reasonably aware about the financial side of the programs and the monitory aspirations of both private and Government owned Television channels. Even though, the farmers are not aware on the technical terminology and jargons, they have ideas about success stories, program serials and they are even informed about channels are not maintaining an audience research section like AIR. Though the farmers accept Doordarshan as the credential source of farm information and methods, they are inclined to the entertainment value of programs too. They prefer to have more entertainment value for the programs of Doordarshan. Surprisingly, they have very solid suggestions on even about the shots which add entertainment value to the farm broadcasting methods of Doordarshan. Farmers are very much aware about the fact that media is just an instrument for inspiration and persuasion. They strongly believe that the source of information and new methods is agricultural research and an effective change happens only when there are adequate infrastructure and marketing facilities, along with the proper support from Government agricultural guideline and support systems like Krishi Bhavans. They strongly believe that media alone cannot create any magic in increasing agricultural production. Farmers are pointing out the lack of response to the feedback and queries of farmers on farming methods, as an evidence for the difference in levels of commitment of Government and private owned Television channels.Farmers are still perceiving AIR farm programs are far more committed to farmers and farming than any other electronic medium. However, they are seriously lacking Radio receivers with medium wave reception facility. Farmers perceive that the farming methods on new crops are more adoptable than the farming methods of traditional crops in both private and Government owned Television channels. There are multiple factors behind this observation from farmers. Farmers changed in terms of viewing habits and they prefer success stories, which are totally irrelevant and they even think that such stories encourage people to go for farming and they opined that such stories are good sources of inspiration. However, they are all very much sure about the importance and particular about the presence of entertainment factor even in farm programs. Farmers expect direct interaction of any expert of the new farming method to implement the method in their agriculture practices. Though introduction of a new idea in the T.V. is acceptable, farmers need the direct instruction of expert on field to start implementing the new farming practices Farmers still have an affinity towards print media reports and agricultural pages and they have complaints to print media on the removal of agricultural information pages from news papers. They prefer the reports in print media as it facilitates them to collect and refer articles when they need it. Farmers are having an eye of doubt about the credibility of farm programs by private T.V. channels. Even if they prefer private Television channels for listening and adopting new farming methods and other farm information, they scrutinize programs to know whether they are sponsored programs by agrochemical or agro-fertilizer manufacturer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present studies, various copper delafossite materials viz; CuAlO2, CuGaO2, CuFeO2 , CuGa1-xFexO2, CuYO2 and CuCaxY1-xO2 were synthesised by solid state reaction technique. These copper delafossite materials were grown in thin film form by rf magnetron sputtering technique. In general copper delafossites exhibit good optical transparency. The conductivity of the CuYO2 could be improved by Ca doping or by oxygen intercalation by annealing the film in oxygen atmosphere. It has so far been impossible to improve the p-type conductivity of CuGaO2 significantly by doping Mg or Ca on the Ga site. The ptype conductivity is presumed to be due to oxygen doping or Cu Vacancies [6]. Reports in literature show, oxygen intercalation or divalent ion doping on Ga site is not possible for CuGaO2 thin films to improve the p-type conductivity. Sintered powder and crystals of CuFeO2 have been reported as the materials having the highest p-type conductivity [14, 15] among the copper and silver delafossites. However the CuFeO2 films are found to be less transparent in the visible region compared to CuGaO2. Hence in the present work, the solid solution between the CuGaO2 and CuFeO2 was effected by solid state reaction, varying the Fe content. The CuGa1-xFexO2 with Fe content, x=0.5 shows an increase in conductivity by two orders, compared to CuGaO2 but the transparency is only about 50% in the visible region which is less than that of CuGaO2 The synthesis of α−AgGaO2 was carried out by two step process which involves the synthesis of β-AgGaO2 by ion exchange reaction followed by the hydrothermal conversion of the β-AgGaO2 into α-AgGaO2. The trace amount of Ag has been reduced substantially in the two step synthesis compared to the direct hydrothermal synthesis. Thin films of α-AgGaO2 were prepared on silicon and Al2O3 substrates by pulsed laser deposition. These studies indicate the possibility of using this material as p-type material in thin film form for transparent electronics. The room temperature conductivity of α-AgGaO2 was measured as 3.17 x 10-4 Scm-1and the optical band gap was estimated as 4.12 eV. A transparent p-n junction thin film diode on glass substrate was fabricated using p-type α-AgGaO2 and n-ZnO.AgCoO2 thin films with 50% transparency in the visible region were deposited on single crystalline Al2O3 and amorphous silica substrates by RF magnetron sputtering and p type conductivity of AgCoO2 was demonstrated by fabricating transparent p-n junction diode with AgCoO2 as p-side and ZnO: Al as n-side using sputtering. The junction thus obtained was found to be rectifying with a forward to reverse current of about 10 at an applied voltage of 3 V.The present study shows that silver delafossite thin films with p-type conductivity can be used for the fabrication of active devices for transparent electronics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable polymers have opened an emerging area of great interest because they are the ultimate solution for the disposal problems of synthetic polymers used for short time applications in the environmental and biomedical field. The biodegradable polymers available until recently have a number of limitations in terms of strength and dimensional stability. Most of them have processing problems and are also very expensive. Recent developments in biodegradable polymers show that monomers and polymers obtained from renewable resources are important owing to their inherent biodegradability, biocompatibility and easy availability. The present study is, therefore, mostly concemed with the utilization of renewable resources by effecting chemical modification/copolymerization on existing synthetic polymers/natural polymers for introducing better biodegradability and material properties.The thesis describes multiple approaches in the design of new biodegradable polymers: (1) Chemical modification of an existing nonbiodegradable polymer, polyethylene, by anchoring monosaccharides after functionalization to introduce biodegradability. (2) Copolymerization of an existing biodegradable polymer, polylactide, with suitable monomers and/or polymers to tailor their properties to suit the emerging requirements such as (2a) graft copolymerization of lactide onto chitosan to get controlled solvation and biodegradability and (2b) copolymerization of polylactide with cycloaliphatic amide segments to improve upon the thermal properties and processability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept.of Applied Chemistry,Cochin University of Science and Technolgy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light emitting polymers (LEP) have drawn considerable attention because of their numerous potential applications in the field of optoelectronic devices. Till date, a large number of organic molecules and polymers have been designed and devices fabricated based on these materials. Optoelectronic devices like polymer light emitting diodes (PLED) have attracted wide-spread research attention owing to their superior properties like flexibility, lower operational power, colour tunability and possibility of obtaining large area coatings. PLEDs can be utilized for the fabrication of flat panel displays and as replacements for incandescent lamps. The internal efficiency of the LEDs mainly depends on the electroluminescent efficiency of the emissive polymer such as quantum efficiency, luminance-voltage profile of LED and the balanced injection of electrons and holes. Poly (p-phenylenevinylene) (PPV) and regio-regular polythiophenes are interesting electro-active polymers which exhibit good electrical conductivity, electroluminescent activity and high film-forming properties. A combination of Red, Green and Blue emitting polymers is necessary for the generation of white light which can replace the high energy consuming incandescent lamps. Most of these polymers show very low solubility, stability and poor mechanical properties. Many of these light emitting polymers are based on conjugated extended chains of alternating phenyl and vinyl units. The intra-chain or inter-chain interactions within these polymer chains can change the emitted colour. Therefore an effective way of synthesizing polymers with reduced π-stacking, high solubility, high thermal stability and high light-emitting efficiency is still a challenge for chemists. New copolymers have to be effectively designed so as to solve these issues. Hence, in the present work, the suitability of a few novel copolymers with very high thermal stability, excellent solubility, intense light emission (blue, cyan and green) and high glass transition temperatures have been investigated to be used as emissive layers for polymer light emitting diodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-toluensulfonate doped polypyrrole (PPy), undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distortions in a family of conjugated polymers are studied using two complementary approaches: within a many-body valence bond approach using a transfer-matrix technique to treat the Heisenberg model of the systems, and also in terms of the tight-binding band-theoretic model with interactions limited to nearest neighbors. The computations indicate that both methods predict the presence or absence of the same distortions in most of the polymers studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High energy materials are essential ingredients in both rocket and explosive formulations. These can be vulnerable due to maltreatment. During gulf war, several catastrophic accidents have been reported from their own payload munitions. The role of energetic binders here was to wrap the explosive formulations to convert it into insensitive munitions. With the aid of energetic binders, the explosive charges are not only protected from tragic accidents due to fire, bullet impact, adjacent detonation, unplanned transportation, but also form total energy output presumption. The use of energetic binders in rocket propellants and explosive charges has been increased after the Second World War. Inert binders in combination with energetic materials, performed well as binders but they diluted the final formulation. Obviously the total energy output was reduced. Currently, the research in the field of energetic polymers is an emerging area, since it plays crucial role in insensitive munitions. The present work emphasises on the synthesis and characterization of oxetanes, oxiranes and polyphosphazene based energetic polymers. The thesis is structured into six chapters. First part of chapter 1 deals with brief history of energetic polymers. The second part describes a brief literature survey of energetic polymers based on oxetanes and oxiranes. Third and fourth parts deal with energetic plasticizers and energetic polyphosphazenes. Finally, the fifth part deals with the various characterization techniques adopted for the current study and sixth part includes objectives of the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and electronic properties of Cu2O have been investigated using the periodic Hartree-Fock method and a posteriori density-functional corrections. The lattice parameter, bulk modulus, and elastic constants have been calculated. The electronic structure of and bonding in Cu2O are analyzed and compared with x-ray photoelectron spectroscopy spectra, showing a good agreement for the valence-band states. To check the quality of the calculated electron density, static structure factors and Compton profiles have been calculated, showing a good agreement with the available experimental data. The effective electron and hole masses have been evaluated for Cu2O at the center of the Brillouin zone. The calculated interaction energy between the two interpenetrated frameworks in the cuprite structure is estimated to be around -6.0 kcal/mol per Cu2O formula. The bonding between the two independent frameworks has been analyzed using a bimolecular model and the results indicate an important role of d10-d10 type interactions between copper atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results are presented of a combined periodic and cluster model approach to the electronic structure and magnetic interactions in the spin-chain compounds Ca2CuO3 and Sr2CuO3. An extended t-J model is presented that includes in-chain and interchain hopping and magnetic interaction processes with parameters extracted from ab initio calculations. For both compounds, the in-chain magnetic interaction is found to be around -240 meV, larger than in any of the other cuprates reported in the literature. The interchain magnetic coupling is found to be weakly antiferromagnetic, -1 meV. The effective in-chain hopping parameters are estimated to be ~650 meV for both compounds, whereas the value of the interchain hopping parameter is 30 meV for Sr2CuO3 and 40 meV for Ca2CuO3, in line with the larger interchain distance in the former compound. These effective parameters are shown to be consistent with expressions recently suggested for the Néel temperature and the magnetic moments, and with relations that emerge from the t-J model Hamiltonian. Next, we investigate the physical nature of the band gap. Periodic calculations indicate that an interpretation in terms of a charge-transfer insulator is the most appropriate one, in contrast to the suggestion of a covalent correlated insulator recently reported in the literature.