999 resultados para electron microprobe analyses


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five widespread upper Cenozoic tephra layers that are found within continental sediments of the western United States have been correlated with tephra layers in marine sediments in the Humboldt and Ventura basins of coastal California by similarities in major-and trace-element abundances; four of these layers have also been identified in deep-ocean sediments at DSDP sites 34, 36, 173, and 470 in the northeastern Pacific Ocean. These layers, erupted from vents in the Yellowstone National Park area of Wyoming and Idaho (Y), the Cascade Range of the Pacific Northwest (C), and the Long Valley area, California (L), are the Huckleberry Ridge ash bed (2.0 Ma, Y), Rio Dell ash bed (ca. 1.5 Ma, C), Bishop ash bed (0.74 Ma, L), Lava Creek B ash bed (0.62 Ma, Y), and Loleta ash bed (ca. 0.4 Ma, C). The isochronous nature of these beds allows direct comparison of chronologic and climatic data in a variety of depositional environments. For example, the widespread Bishop ash bed is correlated from proximal localities near Bishop in east-central California, where it is interbedded with volcanic and glacial deposits, to lacustrine beds near Tecopa, southeastern California, to deformed on-shore marine strata near Ventura, southwestern California, to deep-ocean sediments at site 470 in the eastern Pacific Ocean west of northern Mexico. The correlations allow us to compare isotopic ages determined for the tephra layers with ages of continental and marine biostratigraphic zones determined by magnetostratigraphy and other numerical age control and also provide iterative checks for available age control. Relative age variations of as much as 0.5 m.y. exist between marine biostratigraphic datums [for example, highest occurrence level of Discoaster brouweri and Calcidiscus tropicus (= C. macintyrei)], as determined from sedimentation rate curves derived from other age control available at each of several sites. These discrepancies may be due to several factors, among which are (1) diachronism of the lowest and highest occurrence levels of marine faunal and floral species with latitude because of ecologic thresholds, (2) upward reworking of older forms in hemipelagic sections adjacent to the tectonically active coast of the western United States and other similar analytical problems in identification of biostratigraphic and magnetostratigraphic datums, (3) dissolution of microfossils or selective diagenesis of some taxa, (4) lack of precision in isotopic age calibration of these datums, (5) errors in isotopic ages of tephra beds, and (6) large variations in sedimentation rates or hiatuses in stratigraphic sections that result in age errors of interpolated datums. Correlation of tephra layers between on-land marine and deep-ocean deposits indicates that some biostratigraphic datums (diatom and calcareous nannofossil) may be truly time transgressive because at some sites, they are found above and, at other sites, below the same tephra layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-MgO andesite which is texturally similar to boninite and a variolitic basalt collected from Site 458, about 100 km west of the Mariana Trench, have been studied through microprobe analyses and melting experiments at high water pressures. The boninite-type andesite is very similar in composition and texture to a boninite from Bonin Islands, except that the former is more calcic than the latter. The variolitic basalt contains magnesian pigeonite (Ca12Mg74Fe14) in cores of augite microphenocrysts. This pigeonite crystallized at temperatures above 1200°C. In the melting experiments of the boninite-type rock, clinopyroxene crystallizes as a liquidus phase at pressures at least above 8 kbar. No olivine crystallizes near the liquidus temperatures, indicating that the magma of this rock cannot be in equilibrium with the upper mantle periodotite (lherzolite) at depths at least greater than 25 km. The boninite-type rock is probably a product of fractional crystallization of a more primitive magma (e.g., olivine-bearing boninite magma) by separation of olivine and orthopyroxene. The magma of the variolitic basalt also cannot be in equilibrium with the upper mantle peridotite, and may be a product of fractional crystallization of a more primitive basaltic magma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied a unique chrysotile-antigorite serpentinite, drilled on Deep Sea Drilling Project Leg 84 (Site 566) in the Guatemala forearc. Our in situ major and trace element data provide new constraints on possible reactions and associated trace element mobilisation during shallow serpentinite subduction. Chrysotile of the studied serpentinite, formed by the hydration of an upper mantle peridotite precursor, is partially replaced by antigorite (alone) which also occurs in 0.5 mm wide unoriented veins crosscutting the rock. Based on textural relationships and the P-T-X stability of the rock forming phases, the replacement of chrysotile by antigorite occurred at T < 300 °C, due to interaction between the chrysotile-serpentinite and an aqueous fluid. A comparison of the chemical compositions of reactant and product phases reveals that about 90% of the Cl, more than 80% of the B and about 50% of the Sr hosted originally by chrysotile was lost during fluid-assisted chrysotile-to-antigorite transformation and accompanying partial dehydration, and documents the much lower affinity of antigorite for trace element uptake than that of chrysotile. The fluid-assisted chrysotile-to-antigorite transformation and associated trace element loss documented here can occur in the shallow (< 30 km) region of subduction zones. This transformation decreases notably the Cl and B inventory of subducting serpentinites, which are regarded as one of the most important carriers of these elements into subduction zones. The evolution of serpentinites during initial subduction stages thus appears to be critical in the recycling of specific trace elements such as B or Cl from forearc to subarc depths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

More than 60 basalt samples from two Deep Sea Drilling Project holes on the Costa Rica Rift were studied for magnetic properties and were found to have no properties significantly different from other DSDP basalts. Opaque mineralogical and thermomagnetic properties of these samples, however, to some extent show differences from normal submarine basalts; a new type of thermomagnetic curve and wide range of chemical compositions were recognized. Oxidized samples possibly containing incipient ilmenite exsolution lamellae were reduced and re-equilibrated during heating. The Curie temperatures of the re-equilibrated titanomagnetites are interpreted to be those of the original crystallized phase before oxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Lower Cretaceous and Miocene sequences of the NW African passive continental margin consist of siliciclastic, volcaniclastic and hybrid sediments. These sediments contain a variety of diagenetic carbonates associated with zeolites, smectite clays and pyrite, reflecting the detrital mineralogical composition and conditions which prevailed during opening of the North Atlantic. In the Lower Cretaceous siliciclastic sediments, siderite (-6 per mil to +0.7per mil d18O PDB, -19.6 per mil to +0.6 per mil d13C PDB) was precipitated as thin layers and nodules from modified marine porewaters with input of dissolved carbon from the alteration of organic matter. Microcrystalline dolomite layers, lenses, nodules and disseminated crystals (-3.0 per mil to +2.5 per mil d18O PDB, -7.2 per mil to +4.9 per mil d13C PDB) predominate in slump and debris-flow deposits within the Lower Miocene sequence. During the opening of the Atlantic, volcanic activity in the Canary Islands area resulted in input of volcaniclastic sediments to the Middle and Upper Miocene sequences. Calcite is the dominant diagenetic carbonate in the siliciclastic-bioclastic-volcaniclastic hybrid and in the volcaniclastic sediments, which commonly contain pore-rimming smectite. Diagenetic calcite (-22 per mil to +1.6 per mil d18O PDB, -35.7 per mil to +0.8 per mil d13C PDB) was precipitated due to the interaction of volcaniclastic and bioclastic grains with marine porewaters. Phillipsite is confined to the alteration of volcaniclastic sediments, whereas clinoptilolite is widely disseminated, occurring essentially within foraminiferal chambers, and formed due to the dissolution of biogenic silica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four petrographic lava types occur, ranging from aphyric to moderately phyric clinopyroxene-olivine tholeiitic basalts (Unit 1); olivine-clinopyroxene picritic basalts, sparsely to strongly olivine-phyric (Unit 3-type); olivine-clinopyroxene basalts (clinopyroxene dominant) (Unit 4); and moderately to strongly phyric two-pyroxene-plagioclase basaltic andesites (Unit 9-type). The olivine phyric lavas contain forsteritic olivines (extending to Fo92), and very magnesian Cr-rich spinels similar to those occurring in boninitic lavas. The basaltic andesites are mineralogically and petrographically indistinguishable from the modern Tofua Arc basaltic andesites, one notable feature being the highly calcic cores in plagioclase phenocrysts (up to An95). The forsteritic olivines, the Cr-spinels, and the calcic plagioclases are unlikely to have been precipitated in the lava compositions in which they occur, and are thought to have been incorporated from highly primitive melts by way of mixing processes (as advocated by Allan, this volume). Notwithstanding the evidence for mixing, the major element chemistries of the Unit 1- and Unit 9-type lavas are shown to be consistent with the derivation of the Unit 9-type basaltic andesites by means of fractional crystallization, through magmas of similar chemistry to Unit 1. Some trace element discrepancies in the modeling, and the relative volcanic stratigraphy of Site 839, however, preclude a direct liquid line of descent between the actual recovered units. Trace element data as well as TiO2 and Na2O data clearly illustrate the arc-like affinities of the magmas, with strong highfield-strength element depletion and large-ion-lithophile element enrichment. The abundance patterns are very close to those of the Tofua and Kermadec arc magmas, and also Valu Fa. Pb-, Sr-, and Nd-isotopic compositions indicate closest affinities with a "Pacific" MORB source, apparently characteristic of the western, older part of the Lau Basin. A subduction-related isotopic contribution is, however, inferred. The sources of the Site 839 magmas are thus inferred to be similar to, but less depleted geochemically, than those of the modern Tofua Arc magmas. The Site 839 sequence is interpreted as an older remnant of a volcanic construct of the "proto-Tofua arc", originally developed adjacent to the Tonga Ridge. Opening of the eastern Lau Basin, because of southward migrating propagators, has split and isolated the sequence, leaving it stranded within the modern Lau Basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New major, trace element, and isotope data (Pb, Sr, and Nd) reveal an impressive compositional variation in the basalts recovered from Site 834. Major element compositions span almost the entire range observed in basalts from the modern axial systems of the Lau Basin, and variations are consistent with low-pressure fractionation of a mid-ocean-ridge-basalt (MORB)-like parent, in which plagioclase crystallization has been somewhat suppressed. Trace element compositions deviate from MORB in all but one unit (Unit 7) and show enrichments in large-ion-lithophile elements (LILEs) relative to high-field-strength elements (HFSEs) more typically associated with island-arc magmas. The Pb-isotope ratios define linear trends that extend from the field of Pacific MORB to highly radiogenic values similar to those observed in rocks from the northernmost islands of the Tofua Arc. The Sr-isotope compositions also show significant variation, and these too project from radiogenic values back into the field for Pacific MORB. The variations in key trace element and isotopic features are consistent with magma mixing between two relatively mafic melts: one represented by Pacific MORB, and the other by a magma similar to those erupted on 'Eua when it was part of the original Tongan arc, or perhaps members of the Lau Volcanic Group (LVG). Based on our model, the most radiogenic compositions (Units 2 and 8) represent approximately 50:50 mixtures of these MORB and arc end-members. Magma mixing requires that both components are simultaneously available, and implies that melts have not shown a compositional progression from arc-like to MORB-like with extension at this locality. Rather, it is apparent that essentially pristine MORB can erupt as one of the earliest products of backarc initiation. Indeed, repetition of isotopic and trace element signatures with depth suggests that eruptions have been triggered by periodic injections of fresh MORB melts into the source regions of these magmas. The slow and almost amagmatic extension of the original arc complex envisaged to explain the observed chemistry is also consistent with the horst-and-graben topography of the western side of the Lau Basin. Given the similarities between basalts erupted at the modern Lau Basin spreading centers and MORB from the Indian Ocean, the overwhelming evidence for involvement of mantle similar to Pacific MORB in the petrogenesis of basalts from Site 834 is a new and important observation. It indicates that the original arc was underlain by asthenospheric material derived from the Pacific mantle convection cell, and that this has somehow been replaced by Indian Ocean MORB during the last ~5.5 Ma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Basalt samples recovered during DSDP Legs 68, 69, and 70 from a 550-meter-thick section in two holes near the Costa Rica Rift (Holes 501 and 504B) were found to contain the following secondary minerals: trioctahedral and dioctahedral smectite, chlorite, mixed-layer clays, talc, hematite, pyrite, foujasite, phillipsite, analcime, natrolite, thomsonite, gyrolite, aragonite, calcite, anhydrite, chalcocite, Fe-hydrosilicate, okenite, apophyllite, actinolite, cristobalite, quartz, and magnesite. A less positive identification of bismutite was made. A mineral rich in Mn and minerals with strong reflections at 12.9 Å and 3.20 Å remain unidentified. Trioctahedral smectite replaces glass and olivine in the basalt groundmass. The other secondary minerals occur in veins. The distribution of the secondary minerals in the basalt section shows both hydrothermal and oxidizing-nonoxidizing zonation. Most of the secondary minerals formed under alkaline, nonoxidizing conditions at temperatures up to 120° C. An acidic regime probably existed in the lowest portion of basalt. Oxidative diagenesis followed nonoxidative diagenesis in the upper part of the section. Oxidative diagenesis is characterized by the absence of celadonite, rare occurrences of dioctahedral smectite, and widespread hematite and phillipsite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the chemical zoning of plagioclase phenocrysts from the slow-spreading Mid-Atlantic Ridge and the intermediate-spreading rate Costa Rica Rift to obtain the time scales of magmatic processes beneath these ridges. The anorthite content, Mg, and Sr in plagioclase phenocrysts from the Mid-Atlantic Ridge can be interpreted as recording initial crystallisation from a primitive magma (~11 wt% MgO) in an open system. This was followed by crystal accumulation in a mush zone and later entrainment of crystals into the erupted magma. The initial magma crystallised plagioclase more anorthitic than those in equilibrium with any erupted basalt. Evidence that the crystals accumulated in a mush zone comes from both: (1) plagioclase rims that were in equilibrium with a Sr-poor melt requiring extreme differentiation; and (2) different crystals found in the same thin section having different histories. Diffusion modelling shows that crystal residence times in the mush were <140 years, whereas the interval between mush disaggregation and eruption was ?1.5 years. Zoning of anorthite content and Mg in plagioclase phenocrysts from the Costa Rica Rift show that they partially or completely equilibrated with a MgO-rich melt (>11 wt%). Partial equilibration in some crystals can be modelled as starting <1 year prior to eruption but for others longer times are required for complete equilibration. This variety of times is most readily explained if the mixing occurred in a mush zone. None of the plagioclase phenocrysts from the Costa Rica Rift that we studied have Mg contents in equilibrium with their host basalt even at their rims, requiring mixing into a much more evolved magma within days of eruption. In combination these observations suggest that at both intermediate- and slow-spreading ridges: (1) the chemical environment to which crystals are exposed changes on annual to decadal time scales; (2) plagioclase crystals record the existence of melts unlike those erupted; and (3) disaggregation of crystal mush zones appears to precede eruption, providing an efficient mechanism by which evolved interstitial melt can be mixed into erupted basalts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents electron microprobe data for dunite xenoliths from a lamprophyre dyke located on the island of Qeqertaa, West Greenland. The minimum age of this dyke is Palaeoproterozoic and it experienced amphibolite facies metamorphism and deformation during that era. The samples consist of nearly 200 xenoliths with a size range of 0.5-8 cm. These dunite xenoliths have olivine Mg#, that range from 80.3 to 94.6 (n = 579) with a mean of 92.6. Orthopyroxene is found in three xenoliths and garnet in five others. The latter suggests the depth of the Qeqertaa xenolith suite to be near the diamond stability-field, which is substantiated by the finding of diamonds in bulk samples of the Qeqertaa dyke. This further indicates the presence of a lithospheric mantle domain dominated by high-Mg# dunite to this depth in Palaeoproterozoic time. Cr-rich spinel, in the 0.1-0.2 mm size range, is found within and between olivine grains in individual xenoliths. These Cr-spinels yield Fe-Mg exchange temperatures of 400-600°C. However, the presence of intermediate spinel compositions spanning the lower temperature solvus suggests that equilibration temperatures were >550°C. Fe3+#, expressed as 100xFe3+/(Fe3++Al+Cr)), is shown to be a useful parameter in order to screen for altered spinel (Fe3+#>10) with disturbed Mg# and Cr#. The screened spinel data (Fe3+#<10) show a distinctly different trend in terms of spinel Cr# versus Mg#, compared to unmetamorphosed xenoliths in Tertiary lavas and dikes from Ubekendt Ejland and Wiedemann Fjord, respectively, also located within the North Atlantic craton. This difference likely reflects amphibolite facies metamorphic resetting of the Qeqertaa xenolith suite by Fe-Mg exchange. Given the similarity of the Qeqertaa xenolith suite with the Ubekendt and Wiedemann suites, in terms of their olivine Mg# and spinel Cr# distribution, high-Mg# dunite is likely to be an important component of the subcontinental lithospheric mantle beneath the North Atlantic craton and appears to have spanned a vertical distance of at least 150 km in this region, even during the Palaeoproterozoic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IODP Hole U1309D (Atlantis Massif, Mid-Atlantic Ridge 30°N) is the second deepest hole drilled into slow spread gabbroic lithosphere. It comprises 5.4% of olivine-rich troctolites (~ > 70% olivine), possibly the most primitive gabbroic rocks ever drilled at mid-ocean ridges. We present the result of an in situ trace element study carried out on a series of olivine-rich troctolites, and neighbouring troctolites and gabbros, from olivine-rich intervals in Hole U1309D. Olivine-rich troctolites display poikilitic textures; coarse-grained subhedral to medium-grained rounded olivine crystals are included into large undeformed clinopyroxene and plagioclase poikiloblasts. In contrast, gabbros and troctolites have irregularly seriate textures, with highly variable grain sizes, and locally poikilitic clinopyroxene oikocrysts in troctolites. Clinopyroxene is high Mg# augite (Mg# 87 in olivine-rich troctolites to 82 in gabbros), and plagioclase has anorthite contents ranging from 77 in olivine-rich troctolites to 68 in gabbros. Olivine has high forsterite contents (82-88 in olivine-rich troctolites, to 78-83 in gabbros) and is in Mg-Fe equilibrium with clinopyroxene. Clinopyroxene cores and plagioclase are depleted in trace elements (e.g., Ybcpx ~ 5-11 * Chondrite), they are in equilibrium with the same MORB-type melt in all studied rock-types. These compositions are not consistent with the progressively more trace element enriched (evolved) compositions expected from olivine rich primitive products to gabbros in a MORB cumulate sequence. They indicate that clinopyroxene and plagioclase crystallized concurrently, after melts having the same trace element composition, consistent with crystallization in an open system with a buffered magma composition. The slight trace element enrichments and lower Cr contents observed in clinopyroxene rims and interstitial grains results from crystallization of late-stage differentiated melts, probably indicating the closure of the magmatic system. In contrast to clinopyroxene and plagioclase, olivine is not in equilibrium with MORB, but with a highly fractionated depleted melt, similar to that in equilibrium with refractory oceanic peridotites, thus possibly indicating a mantle origin. In addition, textural relationships suggest that olivine was in part assimilated by the basaltic melts after which clinopyroxene and plagioclase crystallized (impregnation). These observations suggest a complex crystallization history in an open system involving impregnation by MORB-type melt(s) of an olivine-rich rock or mush. The documented magmatic processes suggest that olivine-rich troctolites were formed in a zone with large magmatic transfer and accumulation, similar to the mantle-crust transition zone documented in ophiolites and at fast spreading ridges.