922 resultados para drying speed
Resumo:
Previously we proposed that endogenous amphiphilic substances may partition from the aqueous cytoplasm into the lipid phase during dehydration of desiccation-tolerant organ(ism)s and vice versa during rehydration. Their perturbing presence in membranes could thus explain the transient leakage from imbibing organisms. To study the mechanism of this phenomenon, amphiphilic nitroxide spin probes were introduced into the pollen of a model organism, Typha latifolia, and their partitioning behavior during dehydration and rehydration was analyzed by electron paramagnetic resonance spectroscopy. In hydrated pollen the spin probes mainly occurred in the aqueous phase; during dehydration, however, the amphiphilic spin probes partitioned into the lipid phase and had disappeared from the aqueous phase below 0.4 g water g−1 dry weight. During rehydration the probes reappeared in the aqueous phase above 0.4 g water g−1 dry weight. The partitioning back into the cytoplasm coincided with the decrease of the initially high plasma membrane permeability. A charged polar spin probe was trapped in the cytoplasm during drying. Liposome experiments showed that partitioning of an amphiphilic spin probe into the bilayer during dehydration caused transient leakage during rehydration. This was also observed with endogenous amphipaths that were extracted from pollen, implying similar partitioning behavior. In view of the fluidizing effect on membranes and the antioxidant properties of many endogenous amphipaths, we suggest that partitioning with drying may be pivotal to desiccation tolerance, despite the risk of imbibitional leakage.
Resumo:
Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been predicted that significant intrasarcomeric [Ca2+] gradients should exist during activation. To directly test for this, we measured [Ca2+] distribution in single cardiac myocytes using fluorescent [Ca2+] indicators and high speed, three-dimensional digital imaging microscopy and image deconvolution techniques. Steep cytosolic [Ca2+] gradients from the t-tubule region to the center of the sarcomere developed during the first 15 ms of systole. The steepness of these [Ca2+] gradients varied with treatments that altered Ca2+ release from internal stores. Electron probe microanalysis revealed a loss of Ca2+ from the junctional SR and an accumulation, principally in the A-band during activation. We propose that the prolonged existence of [Ca2+] gradients within the sarcomere reflects the relatively long period of Ca2+ release from the SR, the localization of Ca2+ binding sites and Ca2+ sinks remote from sites of release, and diffusion limitations within the sarcomere. The large [Ca2+] transient near the t-tubular/ junctional SR membranes is postulated to explain numerous features of excitation-contraction coupling in cardiac muscle.
Resumo:
When in Escherichia coli the host RNA polymerase is replaced by the 8-fold faster bacteriophage T7 enzyme for transcription of the lacZ gene, the beta-galactosidase yield per transcript drops as a result of transcript destabilization. We have measured the beta-galactosidase yield per transcript from T7 RNA polymerase mutants that exhibit a reduced elongation speed in vitro. Aside from very slow mutants that were not sufficiently processive to transcribe the lacZ gene, the lower the polymerase speed, the higher the beta-galactosidase yield per transcript. In particular, a mutant which was 2.7-fold slower than the wild-type enzyme yielded 3.4- to 4.6-fold more beta-galactosidase per transcript. These differences in yield vanished in the presence of the rne-50 mutation and therefore reflect the unequal sensitivity of the transcripts to RNase E. We propose that the instability of the T7 RNA polymerase transcripts stems from the unmasking of an RNase E-sensitive site(s) between the polymerase and the leading ribosome: the faster the polymerase, the longer the lag between the synthesis of this site(s) and its shielding by ribosomes, and the lower the transcript stability.
Resumo:
Parvalbumin (PV) is a high affinity Ca(2+)-binding protein found at high concentration in fast-contracting/relaxing skeletal muscle fibers of vertebrates. It has been proposed that PV acts in the process of muscle relaxation by facilitating Ca2+ transport from the myofibrils to the sarcoplasmic reticulum. However, on the basis of metal-binding kinetics of PV in vitro, this hypothesis has been challenged. To investigate the function of PV in skeletal muscle fibers, direct gene transfer was applied in normal and regenerating rat soleus muscles which do not synthesize detectable amounts of PV. Two weeks after in vivo transfection with PV cDNA, considerable levels of PV mRNA and protein were detected in normal muscle, and even higher amounts were detected in regenerating muscle. Twitch half-relaxation time was significantly shortened in a dose-dependent way in transfected muscles, while contraction time remained unaltered. The observed shortening of half-relaxation time is due to PV and its ability to bind Ca2+, because a mutant protein lacking Ca(2+)-binding capacity did not promote any change in physiology. These results directly demonstrate the physiological function of PV as a relaxing factor in mammalian skeletal muscle.
Resumo:
Efficient hardware implementations of arithmetic operations in the Galois field are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication are highly required. In this paper, bit-parallel polynomial basis multipliers over the binary field GF(2(m)) generated using type II irreducible pentanomials are considered. The multiplier here presented has the lowest time complexity known to date for similar multipliers based on this type of irreducible pentanomials.
Resumo:
Unripe banana flour (UBF) production employs bananas not submitted to maturation process, is an interesting alternative to minimize the fruit loss reduction related to inappropriate handling or fast ripening. The UBF is considered as a functional ingredient improving glycemic and plasma insulin levels in blood, have also shown efficacy on the control of satiety, insulin resistance. The aim of this work was to study the drying process of unripe banana slabs (Musa cavendishii, Nanicão) developing a transient drying model through mathematical modeling with simultaneous moisture and heat transfer. The raw material characterization was performed and afterwards the drying process was conducted at 40 ºC, 50 ºC e 60 ºC, the product temperature was recorded using thermocouples, the air velocity inside the chamber was 4 m·s-1. With the experimental data was possible to validate the diffusion model based on the Fick\'s second law and Fourier. For this purpose, the sorption isotherms were measured and fitted to the GAB model estimating the equilibrium moisture content (Xe), 1.76 [g H2O/100g d.b.] at 60 ºC and 10 % of relative humidity (RH), the thermophysical properties (k, Cp, ?) were also measured to be used in the model. Five cases were contemplated: i) Constant thermophysical properties; ii) Variable properties; iii) Mass (hm), heat transfer (h) coefficient and effective diffusivity (De) estimation 134 W·m-2·K-1, 4.91x10-5 m-2·s-1 and 3.278?10-10 m·s-2 at 60 ºC, respectively; iv) Variable De, it presented a third order polynomial behavior as function of moisture content; v) The shrinkage had an effect on the mathematical model, especially in the 3 first hours of process, the thickness experienced a contraction of about (30.34 ± 1.29) % out of the initial thickness, finding two decreasing drying rate periods (DDR I and DDR II), 3.28x10-10 m·s-2 and 1.77x10-10 m·s-2, respectively. COMSOL Multiphysics simulations were possible to perform through the heat and mass transfer coefficient estimated by the mathematical modeling.
Resumo:
Comunicación presentada en EVACES 2011, 4th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Varenna (Lecco), Italy, October 3-5, 2011.
Resumo:
Póster presentado en SPIE Photonics Europe, Brussels, 16-19 April 2012.
Resumo:
Static stretching prior to sport has been shown to decrease force production in comparison to the increasing popularity of dynamic warm-up methods. However some athletes continue to use a bout of static stretching following dynamic methods. The purpose of this study was to investigate the effects on speed, agility and power following a period of additional static stretching following a dynamic warm-up routine. Twenty-five male University students who participated in team sports performed two warm-up protocols concentrating on the lower body one week apart through a randomised cross over design. The dynamic warm-up (DW) protocol used a series of specific progressive exercises lasting 10 minutes over a distance of 20m. The dynamic warm-up plus static stretching (DWS) protocol used the same DW protocol followed by a 5 minute period during which 7 muscle groups were stretched. Following each warm-up the subjects performed a countermovement vertical jump, 20m sprint and Illinois agility test, 1 minute apart. The results demonstrated no significant differences in speed, agility and jump performance following the two protocols DW and DWS. The study concludes that performing static stretching following a dynamic warm-up prior to performance does not significantly affect speed, agility and vertical jump performance.
Resumo:
Póster presentado en el VII European/ I World Meeting in Visual and Physiological Optics
Resumo:
The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.
Resumo:
The aim of this study was to develop an anthropometric profile on highly skilled male water polo players by specific playing positions. Also, to identify significant relationships between these features an overhead throwing speed in highly skilled male Water Polo players by specific playing positions. Methods: A total of 94 male water polo players (24.5±5.3 yrs) who were playing in the Spanish King´s cup were studied. Subjects were grouped according to their specific playing positions: 15 goalkeepers, 45 offensive wings, 20 center backs and 14 center forwards. Anthropometric assessment was made following ISAK protocols. Hand grip and throwing speed in several situations were also assessed. A one-way analysis of variance (ANOVA) was used to determine if significant differences existed among the four playing positions. Pearson product-moment correlation coefficients (r) were used to determine the relationships of all anthropometric measures with throwing speed and hand grip. The total player’s somatotype was endomorphic-mesomorphic (2.9–5.8–2.3). Center forwards exhibit important anthropometric differences compared with the other specific playing positions in elite male water polo players, but no differences were found in throwing speed by specific playing positions in each throwing conditions. Moreover, a higher number of relationships between anthropometric and throwing speed were found in wings and also in center backs but no relationships were found in center forwards. The data reflects the importance of muscle mass and upper body in the throwing skill. Coaches can use this information in order to select players for the different specific positions.
Resumo:
This paper aims to study and highlight the profile of the high speed rail (HSR) passenger in the case of the well-known sun and beach destination of Alicante, located in the Southeast of Spain. This region, which is directly connected with Madrid, differs from others because of its warm and sunny weather. The province is a tourist destination for both Spanish citizens and foreigners. However, the studies on the dynamics of the corridor towards Madrid and Alicante regarding HSR are quite recent and it is not possible to draw final conclusions about its impact on tourist mobility.
Resumo:
Implant failures and postoperative complications are often associated to the bone drilling. Estimation and control of drilling parameters are critical to prevent mechanical damage to the bone tissues. For better performance of the drilling procedures, it is essential to understand the mechanical behaviour of bones that leads to their failures and consequently to improve the cutting conditions. This paper investigates the effect of drill speed and feed-rate on mechanical damage during drilling of solid rigid foam materials, with similar mechanical properties to the human bone. Experimental tests were conducted on biomechanical blocks instrumented with strain gauges to assess the drill speed and feed-rate influence. A three-dimensional dynamic finite element model to predict the bone stresses, as a function of drilling conditions, drill geometry and bone model, was developed. These simulations incorporate the dynamic characteristics involved in the drilling process. The element removal scheme is taken into account and allows advanced simulations of tool penetration and material removal. Experimental and numerical results show that generated stresses in the material tend to increase with tool penetration. Higher drill speed leads to an increase of von-Mises stresses and strains in the solid rigid foams. However, when the feed-rate is higher, the stresses and strains are lower. The numerical normal stresses and strains are found to be in good agreement with experimental results. The models could be an accurate analysis tool to simulate the stresses distribution in the bone during the drilling process.