932 resultados para data complexity
Resumo:
Good daylighting design in buildings not only provides a comfortable luminous environment, but also delivers energy savings and comfortable and healthy environments for building occupants. Yet, there is still no consensus on how to assess what constitutes good daylighting design. Currently amongst building performance guidelines, Daylighting factors (DF) or minimum illuminance values are the standard; however, previous research has shown the shortcomings of these metrics. New computer software for daylighting analysis contains new more advanced metrics for daylighting (Climate Base Daylight Metrics-CBDM). Yet, these tools (new metrics or simulation tools) are not currently understood by architects and are not used within architectural firms in Australia. A survey of architectural firms in Brisbane showed the most relevant tools used by industry. The purpose of this paper is to assess and compare these computer simulation tools and new tools available architects and designers for daylighting. The tools are assessed in terms of their ease of use (e.g. previous knowledge required, complexity of geometry input, etc.), efficiency (e.g. speed, render capabilities, etc.) and outcomes (e.g. presentation of results, etc. The study shows tools that are most accessible for architects, are those that import a wide variety of files, or can be integrated into the current 3d modelling software or package. These software’s need to be able to calculate for point in times simulations, and annual analysis. There is a current need in these software solutions for an open source program able to read raw data (in the form of spreadsheets) and show that graphically within a 3D medium. Currently, development into plug-in based software’s are trying to solve this need through third party analysis, however some of these packages are heavily reliant and their host program. These programs however which allow dynamic daylighting simulation, which will make it easier to calculate accurate daylighting no matter which modelling platform the designer uses, while producing more tangible analysis today, without the need to process raw data.
Resumo:
Confusion exists as to the age of the Abor Volcanics of NE India. Some consider the unit to have been emplaced in the Early Permian, others the Early Eocene, a difference of ∼230 million years. The divergence in opinion is significant because fundamentally different models explaining the geotectonic evolution of India depend on the age designation of the unit. Paleomagnetic data reported here from several exposures in the type locality of the formation in the lower Siang Valley indicate that steep dipping primary magnetizations (mean = 72.7 ± 6.2°, equating to a paleo-latitude of 58.1°) are recorded in the formation. These are only consistent with the unit being of Permian age, possibly Artinskian based on a magnetostratigraphic argument. Plate tectonic models for this time consistently show the NE corner of the sub-continent >50°S; in the Early Eocene it was just north of the equator, which would have resulted in the unit recording shallow directions. The mean declination is counter-clockwise rotated by ∼94°, around half of which can be related to the motion of the Indian block; the remainder is likely due local Himalayan-age thrusting in the Eastern Syntaxis. Several workers have correlated the Abor Volcanics with broadly coeval mafic volcanic suites in Oman, NE Pakistan–NW India and southern Tibet–Nepal, which developed in response to the Cimmerian block peeling-off eastern Gondwana in the Early-Middle Permian, but we believe there are problems with this model. Instead, we suggest that the Abor basalts relate to India–Antarctica/India–Australia extension that was happening at about the same time. Such an explanation best accommodates the relevant stratigraphical and structural data (present-day position within the Himalayan thrust stack), as well as the plate tectonic model for Permian eastern Gondwana.
Resumo:
Background: As an increasing number of Taiwanese people live out the final stages of their lives with chronic and complex conditions. Care decisions at the end of life can also be complex, overwhelming and stressful for an individual, family and health professionals. Understanding individuals’ wishes for end-of-life care and factors which influence individuals' decisions is important so that the provision of quality end-of-life care for all can be promoted and ensured.
Resumo:
Travel time in an important transport performance indicator. Different modes of transport (buses and cars) have different mechanical and operational characteristics, resulting in significantly different travel behaviours and complexities in multimodal travel time estimation on urban networks. This paper explores the relationship between bus and car travel time on urban networks by utilising the empirical Bluetooth and Bus Vehicle Identification data from Brisbane. The technologies and issues behind the two datasets are studied. After cleaning the data to remove outliers, the relationship between not-in-service bus and car travel time and the relationship between in-service bus and car travel time are discussed. The travel time estimation models reveal that the not-in-service bus travel time are similar to the car travel time and the in-service bus travel time could be used to estimate car travel time during off-peak hours
Resumo:
Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.
Resumo:
Big data is big news in almost every sector including crisis communication. However, not everyone has access to big data and even if we have access to big data, we often do not have necessary tools to analyze and cross reference such a large data set. Therefore this paper looks at patterns in small data sets that we have ability to collect with our current tools to understand if we can find actionable information from what we already have. We have analyzed 164390 tweets collected during 2011 earthquake to find out what type of location specific information people mention in their tweet and when do they talk about that. Based on our analysis we find that even a small data set that has far less data than a big data set can be useful to find priority disaster specific areas quickly.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
This paper describes the implementation of the first portable, embedded data acquisition unit (BabelFuse) that is able to acquire and timestamp generic sensor data and trigger General Purpose I/O (GPIO) events against a microsecond-accurate wirelessly-distributed ‘global’ clock. A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fast-moving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment especially if non-deterministic communication hardware (such as IEEE-802.11-based wireless) and inaccurate clock synchronisation protocols are used. The issue of differing timebases makes correlation of data difficult and prevents the units from reliably performing synchronised operations or manoeuvres. By utilising hardware-assisted timestamping, clock synchronisation protocols based on industry standards and firmware designed to minimise indeterminism, an embedded data acquisition unit capable of microsecond-level clock synchronisation is presented.
Resumo:
Objective: To describe unintentional injuries to children aged less than one year, using coded and textual information, in three-month age bands to reflect their development over the year. Methods: Data from the Queensland Injury Surveillance Unit was used. The Unit collects demographic, clinical and circumstantial details about injured persons presenting to selected emergency departments across the State. Only injuries coded as unintentional in children admitted to hospital were included for this analysis. Results: After editing, 1,082 children remained for analysis, 24 with transport-related injuries. Falls were the most common injury, but becoming proportionately less over the year, whereas burns and scalds and foreign body injuries increased. The proportion of injuries due to contact with persons or objects varied little, but poisonings were relatively more common in the first and fourth three-month periods. Descriptions indicated that family members were somehow causally involved in 16% of injuries. Our findings are in qualitative agreement with comparable previous studies. Conclusion: The pattern of injuries varies over the first year of life and is clearly linked to the child's increasing mobility. Implications: Injury patterns in the first year of life should be reported over shorter intervals. Preventive measures for young children need to be designed with their rapidly changing developmental stage in mind, using a variety of strategies, one of which could be opportunistic developmentally specific education of parents. Injuries in young children are of abiding concern given their immediate health and emotional effects, and potential for long-term adverse sequelae. In Australia, in the financial year 2006/07, 2,869 children less than 12 months of age were admitted to hospital for an unintentional injury, a rate of 10.6 per 1,000, representing a considerable economic and social burden. Given that many of these injuries are preventable, this is particularly concerning. Most epidemiologic studies analyse data in five-year age bands, so children less than five years of age are examined as a group. This study includes only those children younger than one year of age to identify injury detail lost in analyses of the larger group, as we hypothesised that the injury pattern varied with the developmental stage of the child. The authors of several North American studies have commented that in dealing with injuries in pre-school children, broad age groupings are inadequate to do justice to the rapid developmental changes in infancy and early childhood, and have in consequence analysed injuries in shorter intervals. To our knowledge, no similar analysis of Australian infant injuries has been published to date. This paper describes injury in children less than 12 months of age using data from the Queensland Injury Surveillance Unit (QISU).
Resumo:
The Queensland University of Technology (QUT) Library, like many other academic and research institution libraries in Australia, has been collaborating with a range of academic and service provider partners to develop a range of research data management services and collections. Three main strategies are being employed and an overview of process, infrastructure, usage and benefits is provided of each of these service aspects. The development of processes and infrastructure to facilitate the strategic identification and management of QUT developed datasets has been a major focus. A number of Australian National Data Service (ANDS) sponsored projects - including Seeding the Commons; Metadata Hub / Store; Data Capture and Gold Standard Record Exemplars have / will provide QUT with a data registry system, linkages to storage, processes for identifying and describing datasets, and a degree of academic awareness. QUT supports open access and has established a culture for making its research outputs available via the QUT ePrints institutional repository. Incorporating open access research datasets into the library collections is an equally important aspect of facilitating the adoption of data-centric eresearch methods. Some datasets are available commercially, and the library has collaborated with QUT researchers, in the QUT Business School especially strongly, to identify and procure a rapidly growing range of financial datasets to support research. The library undertakes licensing and uses the Library Resource Allocation to pay for the subscriptions. It is a new area of collection development for with much to be learned. The final strategy discussed is the library acting as “data broker”. QUT Library has been working with researchers to identify these datasets and undertake the licensing, payment and access as a centrally supported service on behalf of researchers.
Resumo:
Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The “virtual” groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2–5 min) based on sequences of camera ‘fly-throughs’ and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.
Resumo:
This study uses borehole geophysical log data of sonic velocity and electrical resistivity to estimate permeability in sandstones in the northern Galilee Basin, Queensland. The prior estimates of permeability are calculated according to the deterministic log–log linear empirical correlations between electrical resistivity and measured permeability. Both negative and positive relationships are influenced by the clay content. The prior estimates of permeability are updated in a Bayesian framework for three boreholes using both the cokriging (CK) method and a normal linear regression (NLR) approach to infer the likelihood function. The results show that the mean permeability estimated from the CK-based Bayesian method is in better agreement with the measured permeability when a fairly apparent linear relationship exists between the logarithm of permeability and sonic velocity. In contrast, the NLR-based Bayesian approach gives better estimates of permeability for boreholes where no linear relationship exists between logarithm permeability and sonic velocity.