973 resultados para core-level spectroscopies
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
Studies indicate project success should be viewed from the different perspectives of the individual stakeholders. Project managers are owner’s agents. In order to allow early corrective actions to take place in case a project is diverted from plan, to accurately report perceived success of the stakeholders by project managers is essential, though there has been little systematic research in this area. The aim of this paper is to report the findings of an empirical study that compares the level of alignment between project managers and key stakeholders on a list of project performance indicators. A telephone survey involving 18 complex project managers and various key project stakeholder groups was conducted in this study. Krippendorff’s Kappa alpha reliability test was used to assess the alignment levels between project managers and stakeholders. Despite the overall agreement level between project manager and stakeholders is only medium; results have also identified 12 performance indicators that have significant level of agreement between project managers and stakeholders.
Resumo:
The urban waterfront may be regarded as the littoral frontier of human settlement. Typically, over the years, it advances, sometimes retreats, where terrestrial and aquatic processes interact and frequently contest this margin of occupation. Because most towns and cities are sited beside water bodies, many of these urban centers on or close to the sea, their physical expansion is constrained by the existence of aquatic areas in one or more directions from the core. It is usually much easier for new urban development to occur along or inland from the waterfront. Where other physical constraints, such as rugged hills or mountains, make expansion difficult or expensive, building at greater densities or construction on steep slopes is a common response. This kind of development, though technically feasible, is usually more expensive than construction on level or gently sloping land, however. Moreover, there are many reasons for developing along the shore or riverfront in preference to using sites further inland. The high cost of developing existing dry land that presents serious construction difficulties is one reason for creating new land from adjacent areas that are permanently or periodically under water. Another reason is the relatively high value of artificially created land close to the urban centre when compared with the value of existing developable space at a greater distance inland. The creation of space for development is not the only motivation for urban expansion into aquatic areas. Commonly, urban places on the margins of the sea, estuaries, rivers or great lakes are, or were once, ports where shipping played an important role in the economy. The demand for deep waterfronts to allow ships to berth and for adjacent space to accommodate various port facilities has encouraged the advance of the urban land area across marginal shallows in ports around the world. The space and locational demands of port related industry and commerce, too, have contributed to this process. Often closely related to these developments is the generation of waste, including domestic refuse, unwanted industrial by-products, site formation and demolition debris and harbor dredgings. From ancient times, the foreshore has been used as a disposal area for waste from nearby settlements, a practice that continues on a huge scale today. Land formed in this way has long been used for urban development, despite problems that can arise from the nature of the dumped material and the way in which it is deposited. Disposal of waste material is a major factor in the creation of new urban land. Pollution of the foreshore and other water margin wetlands in this way encouraged the idea that the reclamation of these areas may be desirable on public health grounds. With reference to examples from various parts of the world, the historical development of the urban littoral frontier and its effects on the morphology and character of towns and cities are illustrated and discussed. The threat of rising sea levels and the heritage value of many waterfront areas are other considerations that are addressed.
Resumo:
Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.
Resumo:
Purpose–The purpose of this paper is to formulate a conceptual framework for urban sustainability indicators selection. This framework will be used to develop an indicator-based evaluation method for assessing the sustainability levels of residential neighbourhood developments in Malaysia. Design/methodology/approach–We provide a brief overview of existing evaluation frameworks for sustainable development assessment. We then develop a conceptual Sustainable Residential Neighbourhood Assessment (SNA) framework utilising a four-pillar sustainability framework (environmental, social, economic and institutional) and a combination of domain-based and goal-based general frameworks. This merger offers the advantages of both individual frameworks, while also overcoming some of their weaknesses when used to develop the urban sustainability evaluation method for assessing residential neighbourhoods. Originality/value–This approach puts in evidence that many of the existing frameworks for evaluating urban sustainability do not extend their frameworks to include assessing housing sustainability at a local level. Practical implications–It is expected that the use of the indicator-based Sustainable Neighbourhood Assessment framework will present a potential mechanism for planners and developers to evaluate and monitor the sustainability performance of residential neighbourhood developments.
Resumo:
Given there is currently a migration trend from traditional electrical supervisory control and data acquisition (SCADA) systems towards a smart grid based approach to critical infrastructure management. This project provides an evaluation of existing and proposed implementations for both traditional electrical SCADA and smart grid based architectures, and proposals a set of reference requirements which test bed implementations should implement. A high-level design for smart grid test beds is proposed and initial implementation performed, based on the proposed design, using open source and freely available software tools. The project examines the move towards smart grid based critical infrastructure management and illustrates the increased security requirements. The implemented test bed provides a basic framework for testing network requirements in a smart grid environment, as well as a platform for further research and development. Particularly to develop, implement and test network security related disturbances such as intrusion detection and network forensics. The project undertaken proposes and develops an architecture of the emulation of some smart grid functionality. The Common Open Research Emulator (CORE) platform was used to emulate the communication network of the smart grid. Specifically CORE was used to virtualise and emulate the TCP/IP networking stack. This is intended to be used for further evaluation and analysis, for example the analysis of application protocol messages, etc. As a proof of concept, software libraries were designed, developed and documented to enable and support the design and development of further smart grid emulated components, such as reclosers, switches, smart meters, etc. As part of the testing and evaluation a Modbus based smart meter emulator was developed to provide basic functionality of a smart meter. Further code was developed to send Modbus request messages to the emulated smart meter and receive Modbus responses from it. Although the functionality of the emulated components were limited, it does provide a starting point for further research and development. The design is extensible to enable the design and implementation of additional SCADA protocols. The project also defines an evaluation criteria for the evaluation of the implemented test bed, and experiments are designed to evaluate the test bed according to the defined criteria. The results of the experiments are collated and presented, and conclusions drawn from the results to facilitate discussion on the test bed implementation. The discussion undertaken also present possible future work.
Resumo:
Level crossing crashes have been shown to result in enormous human and financial cost to society. According to the Australian Transport Safety Bureau (ATSB) [5] a total of 632 Railway Level crossing (RLX) collisions, between trains and road vehicles, occurred in Australia between 2001 and June 2009. The cost of RLX collisions runs into the tens of millions of dollars each year in Australia [6]. In addition, loss of life and injury are commonplace in instances where collisions occur. Based on estimates that 40% of rail related fatalities occur at level crossings [12], it is estimated that 142 deaths between 2001 and June 2009 occurred at RLX. The aim of this paper is to (i) summarise crash patterns in Australia, (ii) review existing international ITS interventions to improve level crossing and (iii) highlights open human factors research related issues. Human factors (e.g., driver error, lapses or violations) have been evidenced as a significant contributing factor in RLX collisions, with drivers of road vehicles particularly responsible for many collisions. Unintentional errors have been found to contribute to 46% of RLX collisions [6] and appear to be far more commonplace than deliberate violations. Humans have been found to be inherently inadequate at using the sensory information available to them to facilitate safe decision-making at RLX and tend to underestimate the speed of approaching large objects due to the non-linear increases in perceived size [6]. Collisions resulting from misjudgements of train approach speed and distance are common [20]. Thus, a fundamental goal for improved RLX safety is the provision of sufficient contextual information to road vehicle drivers to facilitate safe decision-making regarding crossing behaviours.
Resumo:
It is widely contended that we live in a „world risk society‟, where risk plays a central and ubiquitous role in contemporary social life. A seminal contributor to this view is Ulrich Beck, who claims that our world is governed by dangers that cannot be calculated or insured against. For Beck, risk is an inherently unrestrained phenomenon, emerging from a core and pouring out from and under national borders, unaffected by state power. Beck‟s focus on risk's ubiquity and uncontrollability at an infra-global level means that there is a necessary evenness to the expanse of risk: a "universalization of hazards‟, which possess an inbuilt tendency towards globalisation. While sociological scholarship has examined the reach and impact of globalisation processes on the role and power of states, Beck‟s argument that economic risk is without territory and resistant to domestic policy has come under less appraisal. This is contestable: what are often described as global economic processes, on closer inspection, reveal degrees of territorial embeddedness. This not only suggests that "global‟ flows could sometimes be more appropriately explained as international, regional or even local processes, formed from and responsive to state strategies – but also demonstrates what can be missed if we overinflate the global. This paper briefly introduces two key principles of Beck's theory of risk society and positions them within a review of literature debating the novelty and degree of global economic integration and its impact on states pursuing domestic economic policies. In doing so, this paper highlights the value for future research to engage with questions such as "is economic risk really without territory‟ and "does risk produce convergence‟, not so much as a means of reducing Beck's thesis to a purely empirical analysis, but rather to avoid limiting our scope in understanding the complex relationship between risk and state.
Resumo:
It is recognized that, in general, the performance of construction projects does not meet optimal expectations. One aspect of this is the performance of each participant, which is interdependent and makes a significance impact on overall project outcomes. Of these, the client is traditionally the owner of the project, the architect or engineer is engaged as the lead designer and a contractor is selected to construct the facilities. Generally, the performance of the participants is gauged by considering three main factors, namely time, cost and quality. As the level of satisfaction is a subjective measurement, it is rarely used in the performance evaluation of construction work. Recently, various approaches to the measurement of satisfaction have been made in attempting to determine the performance of construction project outcomes – for instance client satisfaction, consultant satisfaction, contractor satisfaction, customer satisfaction and home buyer satisfaction. These not only identify the performance of the construction project, but are also used to improve and maintain relationships. In addition, these assessments are necessary for continuous improvement and enhanced cooperation between participants. The measurement of satisfaction levels primarily involves expectations and perceptions. An expectation can be regarded as a comparison standard of different needs, motives and beliefs, while a perception is a subjective interpretation that is influenced by moods, experiences and values. This suggests that the disparity between perceptions and expectations may be used to represent different levels of satisfaction. However, this concept is rather new and in need of further investigation. This paper examines the current methods commonly practiced in measuring satisfaction level and the advantages of promoting these methods. The results provided are a preliminary review of the advantages of satisfaction measurement in the construction industry and recommendations are made concerning the most appropriate methods for use in identifying the performance of project outcomes.
Resumo:
The outcomes of the construction projects can be evaluated in numerous ways. One method is to measure the satisfaction of participants as represented by the differences between their expectations and perceptions. This measurement is used widely in construction as it promises benefits, such as the improvement of product delivery, and enhances services quality by identifying some necessary changes. Commonly satisfaction measurement is gauged by evaluating the level of client satisfaction of construction performance. The measurement of customer satisfaction on the other hand, is based on the quality of the end product. This evaluation is used to encourage contractors to improve their performance to a required level and to ensure that the projects are delivered as expected- in terms of time, budget and quality. Several studies of performance measurement have indicated that contractor performance is still not satisfactory, as the outcome delivered is not as required (because of cost overruns, time overruns or because it is generally unsatisfactory). This drawback may be due to the contractors’ lack of expertise, motivation and/or satisfaction. The measurement of performance based on contractor satisfaction levels is still new and very few studies have yet taken place in the construction industry. This paper examines how the characteristics of a contracting organisation – namely its experience in the industry, background, past performance, size of organisation and financial stability- may influence its satisfaction levels with regards to project performance. Previous literature reviews and interviews are used as research tools in the preliminary investigation. The outcome is expected to present a basic understanding of contractor satisfaction measurement and its potential for improving the performance of project outcomes.
Resumo:
Over the past twenty years, the conventional knowledge management approach has evolved into a strategic management approach that has found applications and opportunities outside of business, in society at large, through education, urban development, governance, and healthcare, amongst others. Knowledge-Based Development for Cities and Socieities: Integrated Multi-Level Approaches enlightens the concepts and challenges of knowledge management for both urban environments and entire regions, enhancing the expertise and knowledge of scholars, resdearchers, practitioners, managers and urban developers in the development of successful knowledge-based development policies, creation of knowledte cities and prosperous knowledge societies. This reference creates large knowledge base for scholars, managers and urban developers and increases the awareness of the role of knowledge cities and knowledge socieiteis in the knowledge era, as well as of the challenges and opportunities for future research.
Resumo:
Purpose – The purpose of this paper is to introduce the JKM 2010 annual special issue on knowledge based development (KBD) with reference to the multi-level analysis characteristic of the field. ----- ----- Design/methodology/approach – A description of the knowledge management approach at ESOC (European Space Operations Centre of the European Space Agency) is provided first. At the core of this approach is the breakdown of knowledge in individual technical domains followed by coverage analysis and criticality assessment. Such a framework becomes the reference for best knowledge acquisition, transfer and storage locus identification and subsequent knowledge management practices and guidelines. ----- ----- Findings – KBD provides an integrated framework to account for multidisciplinary analyses and multilevel practices in knowledge capital generation, distribution and utilization. ----- ----- Originality/value – The collection of papers included in the annual special issue on KBD provides a representative, composite view of the research topics and applications concerns in the field. Involving a number of disciplines and levels of analysis, issues ranging from the technological gatekeeper to global knowledge flows show the interdependence of KBD concepts and tools.
Resumo:
This document presents the newly updated strategic directions for strengthening nursing and midwifery services (SDNM) for the period 2011–2015. Complementing and building on the 2002–2008 SDNM, it seeks to provide policymakers, practitioners and other stakeholders at every level with a flexible framework for broad-based, collaborative action to enhance the capacity of nurses and midwives to contribute to: * universal coverage * people-centred health care * policies affecting their practice and working conditions, and the * scaling up of national health systems to meet global goals and targets. The SDNM for 2011–2015 draws on several key World Health Assembly resolutions, and are underpinned by the associated global policy recommendations and codes of practice. (1,2) After two years of extensive research and consultation, a SDNM task force was developed, and a consensus on a range of specific activities revolving around 13 objectives in five interrelated key results areas (KRAs), was achieved: n health system and service strengthening n policy and practice * education, training and career development * workforce management and * partnership. Stakeholders, although free to prioritize certain parts of the framework to meet their own particular needs, are encouraged to adhere to the cornerstone of collaborative action, namely the common goal enshrined in the core SDNM 2011–2015 vision statement: improved health outcomes for individuals, families and communities through the provision of competent, culturally sensitive, evidence-based nursing and midwifery services.
Resumo:
The question posed in this chapter is: To what extent does current education theory and practice prepare graduates for the creative economy? We first define what we mean by the term creative economy, explain why we think it is a significant point of focus, derive its key features, describe the human capital requirements of these features, and then discuss whether current education theory and practice are producing these human capital requirements. The term creative economy can be critiqued as a shibboleth, but as a high level metaphor, it nevertheless has value in directing us away from certain sorts of economic activity and toward other kinds. Much economic activity is in no way creative. If I have a monopoly on some valued resource, I do not need to be creative. Other forms of economic activity are intensely creative. If I have no valued resources, I must create something that is valued. At its simplest and yet most profound, the idea of a creative economy suggests a capacity to compete based on engaging in a gainful activity that is different from everyone else’s, rather than pursuing the same endeavor more competitively than everyone else. The ability to differentiate on novelty is key to the concept of creative economy and key to our analysis of education for this economy. Therefore, we follow Potts and Cunningham (2008, p. 18) and Potts, Cunningham, Hartley, and Ormerod (2008) in their discussion of the economic significance of the creative industries and see the creative economy not as a sector but as a set of economic processes that act on the economy as a whole to invigorate innovation based growth. We see the creative economy as suffused with all industry rather than as a sector in its own right. These economic processes are essentially concerned with the production of new ideas that ultimately become new products, service, industry sectors, or, in some cases, process or product innovations in older sectors. Therefore, our starting point is that modern economies depend on innovation, and we see the core of innovation as new knowledge of some kind. We commence with some observations about innovation.